
UNIVERSITÄT DES SAARLANDESUNIVERSITÄT DES SAARLANDES

MASTER THESISMASTER THESIS

Enumeration-aware Molecular SMILES
Transformers for Representation

Learning and Low-resource Scenarios

submitted in fulfillment of the degree requirements of the

MSc in Computer Science at Saarland University

Author:

Shahrukh KHAN

Matriculation: 7004431

Supervisors:

Prof. Dr. Dietrich KLAKOW

Prof. Dr. Olga KALININA

APRIL 8, 2023



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Limitations of State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Goals of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Computational Representation of Molecules . . . . . . . . . . . . . . . . . 6

2.1.1 Molecular Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 SMILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Fingerprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 3D Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Drug Discovery Methods for Machine Learning . . . . . . . . . . . . . . . 9

2.2.1 QSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Virtual Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Neural Transfer Learning for Drug Discovery . . . . . . . . . . . . . . . . . 10

2.3.1 Encoder Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Encoder-decoder Architecture . . . . . . . . . . . . . . . . . . . . . 12

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Related Work 15

3.1 SMILES Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Encoder Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Encoder-decoder Models . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Contrastive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Low-data Molecular Drug Discovery . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 SMILES Enumerations as Data Augmentation . . . . . . . . . . . . 23

i



3.2.2 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Datasets 27

4.1 Datasets Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Virtual Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.3 QSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.4 Datasets Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.5 Application: HIPS Dataset . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Dataset Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Methodology 31

5.1 SMILES Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Contrastive Encoder Transformer . . . . . . . . . . . . . . . . . . . 32

5.1.2 Denoising Encoder-decoder Transformer . . . . . . . . . . . . . . . 39

5.2 Molecular Low-Data Regime . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Enumeration-aware Semi-supervised Learning . . . . . . . . . . . . 41

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Experimental Evaluation 45

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.2 Model Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 SMILES Representation Learning Results . . . . . . . . . . . . . . . . . . . 47

6.2.1 Encoder-based Contrastive Domain Adaptation (RQ1) . . . . . . . 47

6.2.2 Denoising-based Encoder-decoder Canonicalization BART (RQ2) . 49

6.2.3 Comparison to Others (RQ3) . . . . . . . . . . . . . . . . . . . . . . 51

6.2.4 Evaluation of Enumeration-aware Representations (RQ4) . . . . . . 51

6.3 Enumeration-aware Semi-supervised Learning Results . . . . . . . . . . . 53

6.3.1 Semi-supervised Learning for Small Molecular Datasets (RQ5) . . 53

6.4 Application: HIPS Dataset Results . . . . . . . . . . . . . . . . . . . . . . . 55

ii



6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusion 56

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

List of Figures 59

List of Tables 61

Bibliography 63

Appendix 71

A Code Modules 71

A.1 Enumeration-aware Molecular Transformers . . . . . . . . . . . . . . . . . 71

A.2 Fine-tuning on low-data via Semi-supervised Learning . . . . . . . . . . . 71

A.3 RDKit Virtual Screening Benchmarking Platform for Transformers . . . . . 72

A.4 SMILES Featurizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.5 SMILES Augment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

iii



iv

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any other
media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek
der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public by
having them added to the library of the Computer Science Department.

Saarbrücken, April 8, 2023

Shahrukh Khan



v

Acknowledgements

This thesis is realized thanks to the helpful support and guidance of multiple people. I
am grateful to my supervisors Prof. Dr. Dietrich Klakow and Prof. Dr. Olga Kalinina for
allowing me to partake in this research endeavor under their supervision. I would also
like to thank Prof. Dr. Andrea Volkamer for helping me distill the domain-specific chem-
informatics knowledge related to my research. Moreover, I would also like to sincerely
thank all members of the NextAID group for providing their useful feedback, which
allowed me to make meaningful refinements to this thesis. Finally, I would also like to
appreciate Awantee Deshpande [Deshpande, 2022] and Hassan Soliman [Soliman, 2022]
for their well-structured thesis documents which inspired me to enhance the quality of
my thesis.

On a personal note, I would like to express my deepest gratitude to my family and
friends for pledging their emotional support and prayers for me. I am eternally grateful
to my parents for being my persistent source of encouragement through all phases of
my life. I would also like to wholeheartedly thank my wife Rahat for her patience and
support during my graduate studies. Also, I would like to genuinely appreciate my
brother Faisal, who has always been there to help me reprieve during tough times. Lastly,
I would like to convey my heartiest gratitude to all my friends here and in Pakistan for
their everlasting prayers and for motivating me throughout my Master’s.



vi

Abstract

Computer-aided drug discovery plays a pivotal role in the pipeline of discovering novel
drugs. Notably, intelligent machine learning techniques have made drug development
pipelines even more efficient in the pharmaceutical domain. In addition to discovering
novel drugs, machine learning methods also help practitioners establish critical prop-
erties (i.e. toxicity) of the molecules that constitute a drug. Recent work has primarily
been based on using deep transfer learning methods to learn meaningful molecular
fingerprints. Importantly, the eventual success of these techniques heavily relies on the
fidelity and richness of the learned fingerprints.

One of these paradigms deals with learning molecular fingerprints from SMILES rep-
resentations in a self-supervised manner without the need for them to be labeled. It
entails pre-training neural language models with objectives including token masking
on SMILES and multi-task regression on the physicochemical properties of molecules.
Specifically, in recent work, neural fingerprints learned with BERT-like language models
have significantly outperformed classical machine learning methods on drug-discovery-
related tasks including Quantitative Structure-Activity Relationship and Virtual Screening.
However, current SMILES molecular pre-training regimes underperform in low-data
settings. This is potentially attributed to the low fidelity of the learned fingerprints due
to the absence of enumeration knowledge.

In this thesis, we address this challenge in a two-faceted manner: (1) by introducing novel
SMILES pre-training objectives based on contrastive learning, and denoising respectively
to incorporate SMILES enumeration knowledge into learned fingerprints, (2) by coupling
transfer learning with semi-supervised learning approaches to adapt to small-data set-
tings. Our experimental results demonstrate that making pre-trained molecular language
models enumeration-aware with contrastive learning enhances their performance on
downstream tasks. Precisely, as much as 9% improvement on the AUROC metric for the
Quantitative Structure-Activity Relationship task and over 10% and 5% performance gain
on the AUROC and BEDROC20 metrics respectively for the Virtual Screening task.

Furthermore, we extend our work on transfer learning to low-data scenarios suffering
from label scarcity. Our empirical results on the MoleculeNet Benchmark show that re-
placing fully supervised fine-tuning with semi-supervised learning can yield up to 11%
improvement in AUROC score on the test datasets including Tox21 and BACE while
training on a small labeled dataset. Similarly, we apply our proposed approaches on
an actual low-resource molecular dataset by Helmholtz Institute for Pharmaceutical
Research Saarland and observe a gain of ∼3% on the AUROC metric. Hence showing,
that using semi-supervised for fine-tuning can effectively mitigate the scarcity of labels
in molecular datasets while employing pre-trained language models.
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Chapter 1
Introduction

1.1 Motivation

Deep Neural Networks have recently made groundbreaking breakthroughs in the field
of Machine Learning (ML). More precisely, with the introduction of Self-supervised Learning
(SSL) deep learning techniques have even surpassed human performance in the Natural
Language Processing (NLP) [Devlin et al., 2019] and the domain of computer vision do-
main [Kolesnikov et al., 2021]. SSL entails ML model learning from a large unlabeled
dataset whilst generating labeled targets itself autonomously. Consequently, this erad-
icates the fundamental bottleneck of having a large labeled training dataset prior to
training a generalizable ML model. Importantly, this opens a corridor of opportunity
for optimizing the drug discovery process, which usually spans between 6 and 10 years
[Mohs and Greig, 2017].

Graph-based ML approaches have traditionally surpassed SMILES-based language
models on drug discovery tasks such as Quantitative Structure-Activity Relationship
(QSAR), and Virtual Screening, and Quantitative Structure-Property Relationship (QSPR)
[Duvenaud et al., 2015, Kearnes et al., 2016]. However, such methods employ large la-
beled datasets. Resultantly, the scarcity of labeled data for a particular domain constrains
their application. Hence, obtaining big datasets with domain-specific protein affinities
and molecular properties might not be feasible for the effective application of graph-
based methods.

Pre-training regimes based on SSL mainly Masked Language Modeling (MLM) have been
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employed to train SMILES-based language models [Chithrananda et al., 2020, Ahmad et al., 2022]
in order to mitigate the need for large labeled datasets. This has been also made viable
due to the availability of large chemical databases such as GuacaMol [Brown et al., 2019a],
and ZINC20 [Irwin et al., 2020] etc. The resulting language models have demonstrated
state-of-the-art results for drug discovery tasks such as QSAR, and Virtual Screening
[Fabian et al., 2020].

Albeit MLM-based language models for molecular SMILES have proven to be perfor-
mant, the majority of the existing methods do not encode the knowledge about SMILES
enumerations explicitly. The absence of enumeration knowledge affects the language
models in two unique ways.

Firstly, the absence of enumeration knowledge results in directly degrading the quality of
representations learned by such language models. For instance, vector representations of
two enumerations of the same molecule are highly likely to be distant in that particular
latent space, as opposed to being close. Similarly, molecular low-quality representations
have an adverse impact on performance on downstream tasks like QSAR, and Virtual
Screening [Vamathevan et al., 2019].

Secondly, canonicalization algorithms aid in establishing distinct representations of
molecules. Resultantly, it removes ambiguous artifacts from SMILES. However, canon-
icalization rules are prone to be intrusive in the language model’s learning process.
Therefore, representations learned by language models on canonical SMILES have lower
fidelity [Fabian et al., 2020]. Additionally, previous studies have demonstrated that uti-
lizing enumerations in the training dataset enhances the expressiveness of the ML model
[Bjerrum and Sattarov, 2018a]. Consequently, embedding enumeration knowledge into
SSL-based language models is quintessential for the expressiveness and high fidelity of
the learned representations.

Another gap in the current cheminformatics literature is the lack of attention given to eval-
uating pre-training-based SSL approaches on low-resource (data) settings [Honda et al., 2019].
Hence, established benchmark datasets and performance metrics for evaluating chem-
informatics models trained on small datasets are scarce. We intend to address such
limitation by employing Semi-supervised Learning (SESL).

Thereby, for the effective application of pre-trained language models on low-data molec-
ular datasets, there is a need for more domain-specific data-efficient approaches.



3

1.2 Limitations of State of the Art

The absence of explicitly administered enumeration knowledge into language models
contributes to performance degradation on downstream tasks [Payne et al., 2020]. One
potential solution was proposed by introducing binary classification as an auxiliary
pre-training task [Fabian et al., 2020]. The classification task involved classifying a pair
composed of canonical and enumerated SMILES as the same or different. However, the
classification task interfered with primary pre-training tasks and resulted in performance
degradation on QSAR tasks.

1.3 Goals of Thesis

The main objective of our work is to enable the application of pre-trained language mod-
els on low-data drug discovery tasks. Our work addresses this in a bi-fold manner, which
includes the administration of domain-specific knowledge into latent representations of
general-purpose pre-trained molecular language models. Furthermore, we evaluate the
application of SESL methods on low-data downstream drug discovery datasets, leverag-
ing additional in-domain unlabeled data to circumvent the scarcity of labels. Finally, we
also evaluate the proposed methods on a real-world low-resource application dataset to
further verify the appositeness of our work.

Concretely, this thesis primarily focuses on addressing two challenges. Those include
(1) explicitly making language models enumeration-aware and (2) adapting Bidirectional
Encoder Representations from Transformers (BERT)-like transformer models to low-resource
molecular datasets. Thereby, has the following goals:

• Analysis of contrastive learning as an intermediate pre-training objective for en-
coding enumeration knowledge into SMILES-based language models.

• Comparison of enumeration-aware encoder-based BERT-like language models
against seq2seq transformers-based language models on drug discovery down-
stream tasks, including QSAR and Virtual Screening.

• Evaluation of dense vector representations learned by enumeration-aware trans-
formers, demonstrating contrastive learning-oriented pre-training, is quintessential
to high-fidelity embeddings.

• Examination of various embedding approaches including the ones from language
models, RDKit1 physicochemical properties, fingerprints, and hybrid approaches
for in-domain sample screening in low-resource scenarios.

1https://www.rdkit.org/.

https://www.rdkit.org/
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• Comparison and application of various SESL techniques in tackling low-resource
drug discovery tasks.

1.4 Research Questions

Application of neural approaches in low-data drug discovery is challenging amidst
non-trivial constraints of lack of labeled data and availability of finite data augmentation
techniques. Therefore, this thesis alleviates such challenges by addressing the following
research questions:

RQ1: Can contrastive domain adaptation encode additional knowledge into encoder-
based language models?

RQ2: Can we incorporate enumerations by a learning encoder-decoder-based canonical-
ization model?

RQ3: How does our domain adaptation pre-training compare to comparative existing
state-of-the-art pre-training approaches for molecular SMILES?

RQ4: Which of the enumeration-aware pre-training approach better incorporates enu-
meration knowledge in representations?

RQ5: To what extent can the Semi-supervised Learning (SESL) paradigm help in low-
resource molecular scenarios?

1.5 Structure of the Thesis

This master thesis is structured as follows: The second chapter provides a brief overview
of computer-aided drug discovery. There we also introduce the essential domain-specific
cheminformatics terminologies relevant to the context of our work. Furthermore, we
also discuss how machine learning can be applied in the drug discovery life cycle, ac-
companied by prominent neural approaches.

In Chapter 3, we go over into deeper detail about the recent transfer learning approaches
for molecular language models and the role of semi-supervised learning in low-data
scenarios. In Chapter 4, we detail the specifics of the molecular datasets we use to
evaluate our proposed approaches. We also introduce a real-world dataset that we use
to evaluate our proposed approaches in a more realistic setting. Finally, we also briefly
discuss the dataset-splitting approaches for molecular datasets.

In Chapter 5, we explain our proposed approaches for molecular representation learning
and the application of pre-trained molecular language models in low-data settings.
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In Chapter 6, we provide the necessary details about the experimental setup of our
work, including the evaluation metrics corresponding to different downstream tasks.
Furthermore, we also discuss the critical design choices when dealing with low-resource
molecular datasets including the choice of data augmentation, and best practices for
intermediate domain adaptation. In Chapter 7, we summarize the conclusions from
our proposed approaches in this Master thesis and discuss potential avenues for future
research.





Chapter 2
Background

Computational methods have significantly boosted the efficiency of drug discovery and
development pipelines in the pharmaceutical domain [Smith et al., 2018]. Computer-
aided drug discovery essentially leverages established structural knowledge of the target
compounds to identify promising drugs. Furthermore, computational methods also play
a pivotal role in predicting molecular properties and are quintessential to effective drug
discovery. In this chapter, we provide a comprehensive overview of fundamental build-
ing blocks for understanding and applying computational methods for drug discovery.
Furthermore, we also discuss the principal role of ML methods responsible for the recent
advancements in drug development.

In Sec. 2.1, we present how molecules can be represented digitally, alongside the data
structures that store and process them. Sec. 2.2 discusses the viability of the ML methods
in the context of drug discovery. Furthermore, we also provide a brief overview of down-
stream molecular machine learning tasks that are relevant to our proposed methods. In
Sec. 2.3, we survey the state-of-the-art sub-field of ML, which is deep learning. Particu-
larly, we broadly study the key classes of deep learning architectures and paradigms such
as transfer learning, which make it one of the most successful approaches for solving
non-trivial drug discovery tasks.

2.1 Computational Representation of Molecules

Before delving into any computational methods for processing molecules, it is important
to answer the question, how molecules can be represented digitally? Primarily, molecules
can be represented as graphs, SMILES, 3D structures, and vector-based fingerprints

6
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[Cordero, 2021]. These representations are visually illustrated in Fig. 2.1.

Figure 2.1: Computational representations of molecules by [Cordero, 2021]
.

2.1.1 Molecular Graph

A molecular graph consists of nodes that represent the atoms and edges which represent
the bonds between the atoms. There can be multiple properties associated with an atom
such as its atomic number, atomic weight, charge, and the number of hydrogen atoms
attached to it. Whereby, the properties of bonds are more trivial. Specifically, a bond can
be of type single, double, triple, or aromatic. The aromatic property refers to a set of
rules that are part of the chemical nomenclature system [James, 2004].

Computationally, molecular graphs are represented as adjacency matrices. Importantly,
the graphs can either be directly processed by the downstream computational algorithms,
unlike SMILES which first needs to be in a vector notation. Furthermore, graph-based ML
techniques can learn fingerprints while encoding the graph properties of the molecules
into the learned fingerprints.

2.1.2 SMILES

With Simplified Molecular-Input Line-Entry System (SMILES) molecules are represented
as strings [Weininger, 1988]. Furthermore, in contrast to the graph representation, the
SMILES format can be viewed as a simple language with few grammatical rules. Im-
portantly, SMILES representation holds the commutative property with respect to the
arrangement of atoms within a molecule. Hence, two important transformations are
applicable to SMILES which are discussed below:
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Enumeration

A single chemical molecule can have multiple corresponding SMILES strings also known
as Enumerations. Enumerations are achieved by random permutation of the atoms
present in the molecule [Bjerrum, 2017]. Fig. 2.2 shows a visual example of the application
of enumeration on the toluene molecule.

Toluene
SMILES

Enumeration

Cc1ccccc1
c1ccccc1C
c1(C)ccccc1
c1c(C)cccc1
c1cc(C)ccc1
c1ccc(C)cc1
c1cccc(C)c1

Figure 2.2: An exemplary illustration of enumeration of the toluene molecule by
[Bjerrum, 2017].

Canonicalization

The canonicalization technique was introduced for the purpose of molecular disam-
biguation [Weininger et al., 1989]. It primarily establishes a one-to-one correspondence
between molecules and their corresponding SMILES representations.

It is important to note here that we use SMILES representations for the implementation
and evaluation of our proposed approaches in this thesis. Since our work primarily
centers around language models which only deal with the textual representation of data.

2.1.3 Fingerprint

Molecular fingerprints encode the molecule structure as vectors of numbers. The most
pervasive form of molecular fingerprints is binary (bits) vectors indicating the presence
(represented as 1s) or absence (represented as 0s) of a specific molecular substructure.
These fingerprints are useful in various drug discovery tasks such as computing the
similarity between two molecules, querying active molecules from a large database
comprising numerous decoys and actives, etc. Importantly, recent neural machine
learning approaches can help learn more robust continuous molecular fingerprints from
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data in an unsupervised fashion. Further details about learning molecular fingerprints
are presented in Sec. 2.3.

2.1.4 3D Structure

The 3D molecular structure is also a molecular graph, albeit in a three-dimensional space.
The three-dimensional structure encodes additional information about the shape of the
molecule. Moreover, the shape in the three-dimensional space of the molecule is highly
reliant on the spatial orientation of the bonds of the molecule [Reusch, 1999].

2.2 Drug Discovery Methods for Machine Learning

Machine learning has become an integral part of modern computer-aided drug discovery
and design pipelines [Klambauer et al., 2019]. The applications of ML in drug discovery
include but are not limited to Virtual Screening, QSAR tasks, QSPR studies, and de novo
drug architectures. In this section, we explain Virtual Screening and QSAR tasks which
are quintessential to the evaluation of our proposed methods as described in detail in
Chapter 6.

2.2.1 QSAR

The goals of QSAR studies are twofold. First, they help establish a relationship between
chemical structures and biological activities based on a molecular dataset. Second, to
predict the activities of novel molecules. Hence, standard ML approaches based on classi-
fication and regression are appropriate to develop QSAR models. 2 Here, the predictors
are either fingerprints from molecular structures or molecular physicochemical prop-
erties. The physicochemical properties are measurable physical properties of chemical
molecules based on different molecular attributes of that particular molecule. Whereby,
the response variables are based on at least one biological activity such as health toxicity
or ecotoxicity.

2.2.2 Virtual Screening

Virtual screening corresponds to a cheminformatics approach for retrieving a few active
molecules among numerous decoys. Here, the active molecules are those which are likely
to bind to a drug target. Moreover, the active and the decoys are specific to that drug
target, such as a protein or enzyme. Furthermore, the retrieval is typically performed
by computing a similarity measure i.e. cosine, etc., over molecular fingerprints. Fig. 2.3

2https://en.wikipedia.org/wiki/Quantitative_structure%E2%80%93activity_
relationship.

https://en.wikipedia.org/wiki/Quantitative_structure%E2%80%93activity_relationship
https://en.wikipedia.org/wiki/Quantitative_structure%E2%80%93activity_relationship
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shows a schematic demonstration of Virtual Screening. Importantly, the performance of
the Virtual Screening task is highly dependent on the richness and fidelity of the learned
or computed fingerprints. In our work, we introduce novel CL-based multi-task neural
approaches (as described in Chapter 5) for learning high-fidelity fingerprints.

Fingerprinting
(ECFC4 etc.)NC(=O)NC(Cc1ccccc1)C(=O)O

n-dimensional fingerprint vector

Molecular
Database

COCCCNc1ncnc2c1[nH]c1ccccc12

n-dimensional fingerprint vector

Vector Space

Simiiarity Search

Query Molecule(s)

1

2

3

6

5

4

Figure 2.3: An overview of an exemplary molecular Virtual Screening pipeline.

2.3 Neural Transfer Learning for Drug Discovery

Traditional machine learning approaches for downstream drug discovery tasks i.e., vir-
tual screening, QSAR, etc. rely on sparse rule-based fingerprints as predictors. However,
recent state-of-the-art machine learning approaches are predominantly based on its
special class of algorithms called neural networks. The key differentiator of neural
approaches is their underlying ability to learn dense, high-fidelity and rich fingerprints
from the molecular dataset. As a result, these learned fingerprints self-contain additional
contextual information from the molecular structure and composition.

Specifically, most of the recent successful fingerprint-learning approaches have been
based on the Transformer architecture [Vaswani et al., 2017]. The key ingredient behind
the powerful transformer architecture is Multi-head Attention mechanism, which effec-
tively encodes multi-faceted context while learning fingerprints as shown in Fig. 2.4.
Consequently, several architectures based on the transformer model have been proposed
incorporating the paradigm of transfer learning.
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Transfer learning entails a two-step training regime for the neural network. In the first
stage, the network is trained typically in an unsupervised fashion on a large general
domain database of SMILES, this is referred to as Pre-training. Whereby, in the second
stage the pre-trained model is trained in a supervised fashion on a comparatively smaller
molecular dataset, this process is known as fine-tuning. Objectively, such transformer-
based architectures coupled with transfer learning can be categorized into two classes of
architectures. These classes are namely the encoder architecture and the encoder-decoder
architecture.

Figure 2.4: The Transformer architecture based on the Encoder and Decoder modules by
[Vaswani et al., 2017]

.
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2.3.1 Encoder Architecture

The BERT model is a highly performant variant of transformer architecture [Devlin et al., 2019].
As shown in Fig. 2.5, the pre-training phase of the BERT model involves either training
with MLM or Next Sentence Prediction (NSP) objective on a large unlabeled text corpus.
Subsequently, the pre-trained model is adapted in a supervised fashion on a downstream
task during fine-tuning.

BERT BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair 

SQuAD

Question Answer Pair

NERMNLI

Figure 2.5: Two phase training workflow for the BERT model based on transfer learning
[Devlin et al., 2019]

.

Pre-training a BERT-like model on a molecular SMILES dataset slightly differs from
its counterpart pre-trained on a natural language corpus. Since molecular SMILES are
analogous to single sentence constructs, hence NSP pre-training objective is not viable.
Furthermore, recent work has shown alternative pre-training mechanisms based on
predicting the physicochemical properties of the molecule known as Multi-task Regression
(MTR) [Ahmad et al., 2022, Fabian et al., 2020]. MTR, unlike MLM-based pre-training,
decouples the relationship between QSAR biological activities and the structure of the
SMILES. Concretely, the plausible pre-training mechanisms for SMILES-based BERT-like
models are MLM and MTR. Whereby, the fine-tuning stage for downstream drug discov-
ery tasks remains synonymous with NLP.

In our work, we propose an additional pre-training objective to complement MLM-based
pre-training. Our proposed pre-training objective relies on contrastive learning, which
aims to make BERT-like molecular language models enumeration-aware. Further details
about our proposed approaches are specified in Sec. 5.1.1.

2.3.2 Encoder-decoder Architecture

The Bidirectional and Auto-Regressive Transformer (BART) architecture is an encoder-
decoder transformer composed of a bidirectional BERT-like encoder and an autoregres-
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sive decoder [Lewis et al., 2019]. The encoder block consists of multi-head attention
blocks similar to the BERT architecture. Whereby, the autoregressive behavior of the
decoder entails that it only conditions the next prediction based on the prior outputs, and
hence has no prior knowledge of future tokens. A high-level architecture of the BART
model is shown in Fig. 2.6.

Autoregressive 
Decoder

Bidirectional 
Encoder

A  B  C  D  E

A  _  B  _  E         <s> A  B  C  D  

Figure 2.6: BART encoder-decoder architecture by [Lewis et al., 2019] for denoising-
based pre-training

The BART model pre-training is based on corrupting the input sequences with arbitrary
noising functions. Subsequently, the model is then trained with the assistance of a
denoising objective, which outputs the original sequence prior to corruption. There are
various plausible sequence corruption schemes employed by the authors. These noising
functions include random shuffle of sentences, random deletion of tokens, document
rotation, token masking, and randomly selected text span replacement with a mask token
as illustrated in Fig. 2.7.

A B C . D E .A . C . E . A _ . D _ E .

A _C . _ E . C . D E . A B
Document RotationToken Masking

Token Deletion Text Infilling

D E . A B C .
Sentence Permutation

Figure 2.7: Input corruption mechanisms for BART pre-training by [Lewis et al., 2019]

Not all of the above noising schemes are applicable to molecular SMILES because of
alternate grammar. Hence, we alter the noising functions for SMILES whilst BART
pre-training. The details about our proposed molecular noising schemes are described in
Sec. 5.1.2.
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2.4 Summary

In this chapter, we described the fundamentals for applying machine learning to molec-
ular datasets. Precisely, we first presented the digital representations of molecules,
including molecular graphs and SMILES. We also discussed the important properties of
SMILES representation, since our work builds on that.

Furthermore, in the context of machine learning, we presented the important downstream
machine learning tasks of QSAR and Virtual Screening. Finally, we introduced the notion
of transfer learning for molecular drug discovery tasks and discussed its most performant
variant based on the transformer architecture. In Chapter 3, we discuss the applications
of the transformer architecture for learning context-aware fingerprints for computational
drug discovery tasks. Additionally, we also highlight possible ways to further refine the
fingerprint learning process.





Chapter 3
Related Work

In this chapter, we present a holistic overview of various neural approaches applied
to downstream drug discovery tasks. In Sec. 3.1, we discuss two prominent classes of
architectures (encoder-based and encoder-decoder) for learning SMILES fingerprints
in the molecular latent space. Whereby, Sec. 3.2 focuses on applications of such neural
approaches in the low-data settings. Moreover, we outline strategies such as data
augmentation and semi-supervised learning to mitigate the absence of further labeled
data. Finally, we briefly summarize the context in which the discussed approaches are
relevant to our proposed methods in Sec. 3.3.

3.1 SMILES Representation Learning

The performance of machine learning models on Virtual Screening and QSAR tasks is
directly influenced by the fidelity of molecular representations also known as finger-
prints [Vamathevan et al., 2019]. Traditionally, molecular fingerprints have been calcu-
lated using rule-based algorithms such as ECFP4 [Rogers and Hahn, 2010], and Morgan
fingerprint [Morgan, 1965] etc. Rule-based fingerprints produce sparse vector represen-
tations for molecular SMILES, which are distributed over a discrete space. However,
such algorithms fail to produce rich molecular representations for low-data settings.

Recent work has successfully demonstrated that molecular representations learned by
language models have higher fidelity. Specifically, the neural fingerprints from language
models have outperformed rule-based algorithms on tasks including molecular reaction
[Liu et al., 2017, Schwaller et al., 2019] and property prediction [Jastrzebski et al., 2016,
Winter et al., 2019].

15
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As discussed in Sec. 2.3, there are two foundational neural network architectures used
in molecular language models, (1) encoder models, and (2) encoder-decoder models.
Thereby, in Sec. 3.1.1, and Sec. 3.1.2 we go over noteworthy recent work related to
encoder-only and encoder-decoder transformer-based language models respectively.
Additionally, our work introduces contrastive learning to incorporate enumeration
knowledge in learned molecular fingerprints. Hence, we also survey the related work in
the area of contrastive learning in Sec. 3.1.3.

3.1.1 Encoder Models

Most of the previous work on encoder-based molecular language models is inspired
by the NLP literature. Thereby, the majority of the recent approaches are based on the
transformer architecture [Vaswani et al., 2017]. Precisely, the BERT architecture combines
transfer learning with SSL using the encoder part of the transformers [Devlin et al., 2019].

Conventionally, BERT-like models have been trained on large molecular SMILES databases
with MLM objective also known as pre-training phase [Payne et al., 2020]. MLM entails
masking a portion of input tokens randomly whilst the model predicts the masked
tokens as output as shown in Fig. 3.1. Subsequently, the cross-entropy loss is mini-
mized between predicted tokens and original input tokens. Consequently, this allows
the language model to acquire intrinsic topological knowledge of the chemical space
for better performance on property prediction tasks [Chithrananda et al., 2020]. Finally,
pre-trained models are further trained in a supervised learning setting called fine-tuning.
Fine-tuning is typically performed on downstream QSAR and QSPR tasks such as molec-
ular property prediction [Wang et al., 2019, Chithrananda et al., 2020].

Figure 3.1: SMILES-BERT pre-training with MLM [Wang et al., 2019].
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Augmenting the MLM-based BERT pre-training with auxiliary pre-training objectives
has also shown promising outcomes. For instance, MolBERT [Fabian et al., 2020] uses
two additional pre-training objectives in addition to MLM, as shown in Fig. 3.2. The first
task implies SMILES pair classification, where the second SMILES in the pair can either
be the enumeration of the first SMILES or an entirely different one. Thereafter, the model
is trained by minimizing the binary cross-entropy loss. The second task involves predict-
ing over 200 real-valued descriptors concerning physicochemical molecular properties
extracted using RDKit. Here, the model learns to optimize the mean squared error over
all predicted descriptors in an MTR fashion.

MolBERT

CLS C ( MASK N...

CLS C ( C N...

EMBEDDING

PHYSCHEMPREDSMILES-EQMASKEDLM

SMILES (or pair of SMILES)

Figure 3.2: Schematic architecture of the MolBERT language model [Fabian et al., 2020].

Similarly, Chemberta-2 [Ahmad et al., 2022] independently pre-trains with either MTR
objective over physicochemical molecular properties from RDKit or alternatively with
MLM as shown in Fig. 3.3. Both Chemberta-2 and MolBERT then finally fine-tune the
pre-trained BERT-like models on supervised QSAR tasks.

Figure 3.3: ChemBERTa-2 pre-training and fine-tuning pipeline [Ahmad et al., 2022].
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Conversely, there also have been studies that proposed modifications to the transformer
encoder to incorporate additional molecular knowledge into the language models. For
instance, instead of pre-training on complete molecules, Mol-BERT [Li and Jiang, 2021]
considers only molecular substructures. The molecular fragments are extracted from
the Morgan algorithm, thereby mapping SMILES to biologically inspired words and
sentences.

Figure 3.4: Full training pipeline for Mol-BERT [Li and Jiang, 2021].

Similarly, some work has also been done on altering the attention mechanism to in-
clude molecular graph knowledge. For example, Molecule Attention Transformer (MAT)
[Maziarka et al., 2020] modifies the attention mechanism from the original transformers
to embed inter-atomic distances and information relating to the structure of the molecular
graph.

Figure 3.5: Overall training pipeline using transfer learning of the MG-BERT language
model [Zhang et al., 2021a].
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Identically, as shown in Fig. 3.5, the Molecular Graph BERT (MG-BERT) [Zhang et al., 2021a]
combines the capabilities of Graph Neural Networks GNNs with BERT-like language mod-
els. Specifically, it amends the attention mechanism to incorporate the message-passing
mechanism from GNNs. Resultantly, the MG-BERT language model can learn from
molecular graphs and SMILES strings.

3.1.2 Encoder-decoder Models

The molecular SMILES-based pre-training using encoder-decoder predates the encoder-
based SMILES pre-training regimes. As such, encoder-decoder have been used for pre-
training on SMILES in two ways (1) using variational autoencoders [Kingma and Welling, 2013],
(2) Sequence to Sequence (seq2seq) models. Concretely, the encoder-decoder models output
the SMILES by decoding using the learned latent representations.

Autoencoders have primarily been employed in QSAR studies, such as molecular prop-
erty prediction [Gómez-Bombarelli et al., 2018]. This involves a two-step transfer learn-
ing approach, as shown in Fig. 3.6. Firstly, the autoencoder is pre-trained in an un-
supervised fashion. Here, the high-dimensional discrete input (SMILES) is projected
onto low-dimensional continuous space also known as a bottleneck. Consequently, that
low-dimensional latent representation is then used to reconstruct the discrete input as
the prediction. Secondly, once the autoencoder has been pre-trained on a large unlabeled
dataset, the learned latent representations are then used for a supervised downstream
QSAR task [Kusner et al., 2017, Gómez-Bombarelli et al., 2018].

Figure 3.6: Autoencoders for fingerprint learning [Gómez-Bombarelli et al., 2018].

The vanilla molecular autoencoders have previously suffered from two challenges. Either
they lacked the knowledge about SMILES enumerations or performed unconstrained
decoding on SMILES [Bjerrum and Sattarov, 2018b, O’Boyle and Dalke, 2018]. To accom-
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modate the SMILES enumerations knowledge, an autoencoder is proposed that predicts
SMILES enumerations by using canonical SMILES as input [Bjerrum and Sattarov, 2018b].
This maximizes both the similarity between the latent representations and the molecular
fingerprint similarity in the molecular space.

Contrary to the autoencoders which learn dense molecular representations as finger-
prints only with the reconstruction objective. The seq2seq SMILES models have been
trained with different pre-training objectives. These include pre-training methods such as
machine translation, denoising, and input reconstruction objectives [Winter et al., 2019,
Honda et al., 2019, Irwin et al., 2022, Xu et al., 2017].

Variants of sequence modeling Recurrent Neural Networks (RNNs) such as Long Short-term
Memory (LSTM) [Hochreiter and Schmidhuber, 1997], and Gated Recurrent Unit (GRU)
[Chung et al., 2014] have been used as the seq2seq SMILES models. The previous work
includes training such GRU-based RNNs combined with the attention mechanism
[Bahdanau et al., 2014] with SMILES reconstruction objective [Xu et al., 2017]. The atten-
tion mechanism assists the network to learn representations in a compact and centralized
latent fingerprint space.

Analogous to the RNNs and the encoder-based representation learning models, the
vanilla transformer architecture [Vaswani et al., 2017] has also demonstrated promising
results for the SMILES reconstruction task. The transformer architecture essentially
embellishes the attention mechanism with multi-head attention, allowing us to learn
multifaceted properties about the molecular space. [Honda et al., 2019].

Figure 3.7: Illustration of the SMILES transformer architecture for low-data molecular
scenarios [Honda et al., 2019].
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Lastly, one of the previous works also highlights the tremendous capabilities of transformers-
based denoising autoencoders on QSAR tasks [Irwin et al., 2022]. Precisely, it employs
the BART model [Lewis et al., 2019] which has produced state-of-the-art results on the
downstream QSAR tasks. The BART model takes corrupted input SMILES with noise
coming from enumerations or random masking. The decoder is responsible for recon-
structing the original canonical SMILES from the latent representation while removing
the noise. Hence, this helps the denoising model to establish both a syntactical and
semantic understanding of the molecular SMILES and the underlying chemical space.
However, in this work, the authors do not evaluate the pre-trained encoder-decoder
model on downstream classification-based QSAR and Virtual Screening tasks.

Figure 3.8: Denoising-based Chemformer pre-training pipeline for learning SMILES
fingerprints [Irwin et al., 2022].

3.1.3 Contrastive Learning

Previous work related to pre-trained language models does not explicitly embed SMILES
enumeration knowledge into language models during pre-training. Thereby, one of
our proposed solutions is to encode that knowledge with a CL pre-training objective
[Chopra et al., 2005]. Specifically, encoder-based BERT-like language models can be
pre-trained to pull together representations of enumerations of SMILES to the latent
representation of the canonical SMILES and vice versa.

Importantly, there is a limited body of work on pre-training SMILES-based language
models with CL. Most of the prominent CL techniques use multiple molecular represen-
tations, train on GNNs, or combine them together [Yang et al., 2021b, Guo et al., 2022,
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Pinheiro et al., 2022, Wang et al., 2021].

In one of the prior works, vanilla transformer architecture which is essentially a seq2seq
model has trained with CL objective [Shrivastava and Kell, 2021]. However, this work
does not investigate BERT-like encoder-based models, which are currently state-of-the-
art on QSAR and Virtual Screening tasks. Additionally, a more related work pre-trains
the BERT language model with different pre-training tasks. The pre-training objectives
include CL, atom, and molecule property prediction [Wu et al., 2022]. However, this
work does not demonstrate the comparison of CL-based pre-training with currently
more performant pre-training regimes, including MLM and physicochemical property
prediction.

Figure 3.9: Training pipeline for Knowledge-based-BERT with contrastive learning for
learning local and global fingerprints [Wu et al., 2022].

We model the task of learning SMILES representations analogous to learning sen-
tence representations in NLP. Sentence representations can be learned in various pre-
training settings. Exemplary techniques include predicting the surrounding sentences
[Kiros et al., 2015], and training a siamese network on a Natural Language Inference (NLI)
dataset [Cer et al., 2018, Yang et al., 2018].

Similarly, recent work has demonstrated that the sentence representations learned
with MLM-based language models are anisotropic and are non-uniformly distributed
[Ethayarajh, 2019a, Li et al., 2020a]. Thereby, the performance on downstream tasks such
as document retrieval which is analogous to Virtual Screening and other related tasks
suffer [Reimers and Gurevych, 2019].
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Previous work to explicitly address the issues of alignment and uniformity with CL
has demonstrated drastic improvements in learned sentence representations. One of
the previous works proposes training a siamese BERT-like model with contrastive loss
[Reimers and Gurevych, 2019]. The contrastive loss primarily maximizes the similarity
between the fixed-length sentence representations. The fixed-length sentence vectors
are obtained with one of the various strategies, including CLS-token embedding, or by
performing a pooling operation.

Identically, another comparative approach involves feeding sentence pairs/triplets into
the BERT-like transformer encoder [Gao et al., 2021]. The triplet input includes an an-
chor sequence, a positive sequence semantically identical to the anchor sequence, and
a hard negative an unrelated sequence to the anchor. Then the encoder is trained by
obtaining fixed sentence representations for each sentence similar to the earlier work
[Reimers and Gurevych, 2019]. Thereafter, the similarity is maximized between the an-
chor and positive input and minimized between the anchor and the negative sentences
with CL-based loss [Oord et al., 2018].

3.2 Low-data Molecular Drug Discovery

Deep neural networks are intrinsically data-hungry while learning generalizable patterns
in data. Thereby, the availability of reasonably large datasets, especially for downstream
supervised learning tasks, becomes critical. In this section, we discuss two different ways
to tackle the low-data challenge for molecular discovery. First, we explain how SMILES
enumerations can be seen as a viable data-augmentation mechanism. Subsequently, we
also survey some of the applicable semi-supervised mechanisms that we later employ to
deal with low-data molecular settings.

3.2.1 SMILES Enumerations as Data Augmentation

Data augmentation has been successfully applied to generate additional training in-
stances [Taylor and Nitschke, 2018]. Additionally, data augmentation has also been
shown as an implicit form of regularization to avoid overfitting. Importantly, data aug-
mentation has proven to be pivotal in both computer vision [Shorten and Khoshgoftaar, 2019]
and NLP domain [Shorten et al., 2021].

Similar to the other domains, molecular deep QSAR-based models require sizeable
datasets to train. Enumerations can serve as a natural augmentation technique for
molecular SMILES. This requires randomly scrambling the order of the atoms within
the molecule [Bjerrum, 2017]. Hence, multiple SMILES variants can be produced from a
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single canonical SMILES. Such enumerations can be performed in a trivial manner with
RDKit.

Including enumerations in training, data has proven to be advantageous for both discrimi-
native and generative machine learning tasks with molecular SMILES [Chen and Tseng, 2021,
Li et al., 2022].

Generative models trained with enumerated SMILES result in generating at least twice
the amount of de novo molecules as the training data [Ertl et al., 2017, Arús-Pous et al., 2019].
Importantly, the generated SMILES have molecular properties as the training SMILES
within that specific chemical space. Whereby, in another previous work it has been
shown that enumerations-assisted generative models can achieve accuracy up to 98%
for generating valid de novo molecules [van Deursen et al., 2020]. Lastly, generative
models immensely benefit from enumerations in sparsely populated chemical spaces in
low-resource scenarios [Skinnider et al., 2021].

Identically, enumerations are a useful resource for cheaply obtaining further labeled data
for discriminative learning tasks in QSAR studies. Supervised discriminative learning
models trained on enumerations-based augmented data have shown to significantly
outperform models trained only on canonical SMILES [Tetko et al., 2019].

Lastly, it is essential to underpin the importance of data augmentation for low-data QSAR
studies. Low data entails having very few training instances, constraining the training
process. Previous studies have also demonstrated the quintessential characteristic of
enumerations in such low-resource scenarios. SMILES enumerations as data augmen-
tation are most effective when combined with transfer learning. Precisely, utilizing
the augmentations in the SSL-oriented pre-training phase and then fine-tuning on the
downstream low-resource dataset [Honda et al., 2019, Zhang et al., 2021b].

3.2.2 Semi-supervised Learning

Another important facet of our work is the application of transfer learning approaches
to low-data regimes. Additionally, previous work pertaining to low-resource molecular
property prediction with SMILES is scarce. Furthermore, some of the work such as
[Honda et al., 2019] addresses this problem, however, the authors only employ a super-
vised learning approach which fails to generalize with very small labeled datasets. To
alleviate such low-data regimes, we propose a fusion of transfer learning with semi-
supervised learning for tackling low-data scenarios.

In our work, we employ prominent pseudo-labeling approaches from the semi-supervised
learning paradigm [Yang et al., 2021a] appropriate for the molecular domain. We eval-
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uate pseudo-label, which is a self-training method [Lee et al., 2013]. Pseudo label algo-
rithm proposes training of a neural network with labeled and unlabeled data simultane-
ously. The overall neural network is trained in a supervised fashion. The unlabeled data
is passed through the network and the maximum posterior from the predicted posteriors
are considered pseudo labels. The training process of the pseudo label algorithm is
shown in Fig. 3.10.

16

Fig. 6. A glimpse of the diverse range of architectures used for pseudo-label semi-supervised methods. The same color and structure have the
same meaning as shown in Figure 4. Ms denotes shared module, M1, M2 and M3 are three different modules in Tri-Net. “Rotation ” and “Exemplar”
represent S4L-Rotation and S4L-Exemplar, respectively.

classifier. Because of this assumption, Co-training learns
two different classifiers on these two views (see Fig. 6(1)).
Then the two classifiers are applied to predict each view’s
unlabeled data and label the most confident candidates for
the other model. This procedure is iteratively repeated till
unlabeled data are exhausted, or some condition is met
(such as the maximum number of iterations is reached).
Let v1 and v2 as two different views of data such that
x = (v1, v2). Co-training assumes that C1 as the classifier
trained on View-1 v1 and C2 as the classifier trained on
View-2 v2 have consistent predictions on X . In the objective
function, the Co-training assumption can be model as:

Lct = H(
1

2
(C1(v1) + C2(v2)))�

1

2
(H(C1(v1)) + H(C2(v2))),

(45)
where H(·) denotes the entropy, the Co-training assumption
is formulated as C(x) = C1(v1) = C2(v2), 8x = (v1, v2) ⇠
X . On the labeled dataset XL, the supervised loss function
can be the standard cross-entropy loss

Ls = H(y, C1(v1)) + H(y, C2(v2)), (46)

where H(p, q) is the cross-entropy between distribution p
and q.

The key to the success of Co-training is that the two
views are different and complementary. However, the loss
function Lct and Ls only ensure the model tends to be
consistent for the predictions on the dataset. To address this
problem, [217] forces to add the View Difference Constraint
to the previous Co-training model, and formulated as:

9X 0 : C1(v1) 6= C2(v2), 8x = (v1, v2) ⇠ X 0, (47)

where X 0 denotes the adversarial examples of X , thus
X 0 \ X = ;. In the loss function, the View Difference
Constraint can be model by minimizing the cross-entropy
between C2(x) and C1(g2(x)), where g(·) denotes the adver-
sarial examples generated by the generative model. Then,
this part loss function is:

Ldif (x) = H(C1(x), C2(g1(x)))+H(C2(x), p1(g2(x))). (48)

Some other research works also explore to apply co-
training into neural network model training. For example,
[218] treats the RGB and depth of an image as two inde-
pendent views for object recognition. Then, co-training is
performed to train two networks on the two views. Next, a
fusion layer is added to combine the two-stream networks

for recognition, and the overall model is jointly trained.
Besides, in sentiment classification, [219] considers the orig-
inal review and the automatically constructed anonymous
review as two opposite sides of one review and then apply
the co-training algorithm. One crucial property of [219] is
that two views are opposing and therefore associated with
opposite class labels.

Tri-Net. Tri-net [220], a deep learning-based method
inspired by the tri-training [221]. The tri-training learns
three classifiers from three different training sets, which are
obtained by utilizing bootstrap sampling. The framework
(as shown in Fig. 6(2)) of tri-net can be intuitively described
as follows. Output smearing [222] is used to add random
noise to the labeled sample to generate different training
sets and help learn three initial modules. The three models
then predict the pseudo-label for unlabeled data. With the
predictions of two modules for unlabeled instances con-
sistent, the pseudo-label is considered to be confident and
stable. The labeled sample is added to the training set of
the third module, and then the third module is fine-tuned
on the augmented training set. During the augmentation
process, the three modules become more and more sim-
ilar, so the three modules are fine-tuned on the training
sets respectively to ensure diversity. Formally, the output
smearing is used to construct three different training sets
{Lj

os = (xi, ŷ
j
i ), j = 1, 2, 3} from the initial labeled set XL.

Then tri-net can be initialized by minimizing the sum of
standard softmax cross-entropy loss function from the three
training sets,

L =
1

L

LX

i=1

�
Ly(M1(MS(xi)), ŷ

1
i ) + Ly(M2(MS(xi)), ŷ

2
i )

+Ly(M3(MS(xi)), ŷ
3
i )
 

, (49)

where Ly is the standard softmax cross-entropy loss func-
tion; MS denote a shared module, and M1, M2, M3 is the
three different modules; Mj(MS(xi)), j = 1, 2, 3 denotes
the outputs of the shared features generated by MS . In
the whole procedure, the unlabeled sample can be pseudo-
labeled by the maximum posterior probability,

y = argmax
k2{1,2,...,K}

{p(M1(MS(x)) = k|x)+

p(M2(MS(x)) = k|x) + p(M3(MS(x)) = k|x)} .

Summary. The disagreement-based SSL methods exploit
the unlabeled data by training multiple learners, and the

Figure 3.10: Pseudo label simultaneous training mechanism from [Yang et al., 2021a].

Figure 3.11: Illustration of the co-training process from [Yang et al., 2021a].

To complement the self-training approach, we also investigate the disagreement-based
deep co-training approach [Blum and Mitchell, 1998]. Deep co-training essentially as-
sumes that data has two complementary and different views. It proposes simultaneous
training of two different networks for each of the two views, respectively. Finally, each
view’s network is used to label other view’s unlabeled samples iteratively, until the
unlabeled data is exhausted. An overview of the deep co-training pipeline is presented
in Fig. 3.11.

3.3 Summary

The above-discussed approaches for molecular SMILES-based language modeling fail to
effectively encode enumeration knowledge into the pre-trained language models. Hence,
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the learned molecular representations are susceptible to being low-fidelity. Importantly,
the fidelity of the learned representations is directly correlated with the performance of
downstream drug discovery models. Furthermore, training solely on the canonicaliza-
tion algorithm’s rules can be intrusive to the model’s learning process.

In this thesis, we seek to alleviate the above shortcomings of the current SMILES lan-
guage modeling mechanisms. First, we propose to incorporate enumeration knowledge
for learning high-fidelity SMILES fingerprints. We employ the contrastive learning
approaches proposed by [Gao et al., 2021, Reimers and Gurevych, 2019] to administer
enumeration knowledge into learned latent fingerprints, which can potentially benefit
the downstream QSAR Tasks. Whereby, the second part of our work is based on the
coupling of semi-supervised learning approaches with pre-trained molecular language
models to tackle low-data regimes for drug discovery, as described in Chapter 5.





Chapter 4
Datasets

Our proposed approaches use datasets that are utilized in the three stages of model
training, namely pre-training, domain adaptation, and fine-tuning for downstream tasks.
Importantly, the pre-training dataset is sampled from a general-purpose library of molec-
ular SMILES. Whereby, domain adaptation requires an unlabeled dataset from the same
domain as the downstream dataset. Finally, the model is fine-tuned on the downstream
dataset in a semi-supervised/supervised learning manner.

This chapter shows the datasets used in the model training process at the three previously
discussed stages and their different statistics.

4.1 Datasets Gathering

This section explains the datasets with respect to the corresponding tasks, these datasets
are used for the training and evaluation of our proposed molecular language models.

4.1.1 Pre-training

We pre-train the proposed language models on the GuacaMol [Brown et al., 2019b] bench-
mark dataset. The GuacaMol dataset is a subset of ∼1.6M molecules sampled from
the ChEMBL database [Gaulton et al., 2017]. This dataset primarily serves in learning
domain-agnostic molecular representations with different pre-training objectives. Also,
the detailed statistics about the GuacaMol dataset are presented in Tab. 4.1.

27
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4.1.2 Virtual Screening

We use the virtual screening benchmarking platform by RDKit [Riniker and Landrum, 2013]
for Virtual Screening evaluation. The benchmarking platform evaluates the molecular
fidelity of fingerprints on 69 datasets. Moreover, each dataset is composed of a single
drug-protein target. We evaluate representations learned by different pre-training objec-
tives directly on Virtual Screening using this benchmark. Specifically, for a fixed number
of query SMILES (number of query SMILES = 5), we evaluate how accurately can the
representations from language models retrieve the ground truth of active molecules.

4.1.3 QSAR

We use a subset of datasets related to the Biophysics and Physiology domain from the
MoleculeNet benchmark [Wu et al., 2018] for evaluating the pre-trained language models
on downstream QSAR tasks. Importantly, all the datasets in the MoleculeNet benchmark
employ scaffold splitting, which is effective in practical applications. Below, we outline
the specific details about each of the QSAR datasets.

MUV

The Maximum Unbiased Validation (MUV) dataset is used for benchmarking virtual screen-
ing methods. It consists of compounds with 17 tasks filtered from the PubChem bio-
activity data using the refined nearest neighbor analysis [Rohrer and Baumann, 2009].
In our work, we employ the MUV dataset for the intermediate domain adaptation prior
to fine-tuning and evaluating QSAR and the Virtual Screening tasks.

BACE

The BACE dataset consists of a collection of human β-secretase 1 (BACE-1) inhibitors
with their corresponding IC50 and binary binding results [Subramanian et al., 2016]. It
is essentially compiled by aggregating the experimental values from the existing studies.
The MoleculeNet benchmark contains the BACE compounds with their 2D structures
and binary labels.

BBBP

The Blood–brain Barrier Penetration (BBBP) dataset is based on the modeling of the perme-
ability brain barrier of drugs, hormones, and neurotransmitters [Wu et al., 2018]. Certain
nervous system issues are caused once this barrier is breached by the nervous system
drugs. This dataset contains a library of compounds with their brain permeability
properties captured in binary labels.



29

Tox21

The Tox21 dataset was created as the result of the Toxicology in the 21st Century (Tox21)
initiative for collecting toxicity measurements. It contains a collection of 12 tasks for
qualitative toxicity measurements.

ClinTox

The ClinTox dataset was created during the curation of the MoleculeNet benchmark
[Wu et al., 2018]. It specifically compares the toxicity measurements of Food and Drug
Administration (FDA) approved drugs against the drugs which failed their clinical trials.
Hence, the dataset includes the toxicity measurements of compounds and their FDA
approval status as two separate labels.

4.1.4 Datasets Summary

The following Tab. 4.1 contains the summary of the datasets alongside their evaluation
metrics. Furthermore, detailed information about the evaluation is provided in Sec. 6.1.3.

Categeory Dataset Tasks Type Mols Metric

− GuacaMol − P 1,273,104 −

Biophysics MUV
BACE

−
1

D
C

93,127
1,522

−
AUROC

Physiology
BBBP
Tox21

ClinTox

1
12
2

C
C
C

2,053
7,831
1,491

AUROC
AUROC
AUROC

Table 4.1: Summarized information of MoleculeNet and GuacaMol [Brown et al., 2019b].
“C", “P", and “D" in the type column indicates classification, pre-training, and domain
adaptation (for details about domain adaptation refer to Sec. 5.1.1) respectively.

4.1.5 Application: HIPS Dataset

In addition to the public MoleculeNet benchmark, we also evaluate our proposed ap-
proaches on a real-world propriety dataset by Helmholtz Institute for Pharmaceutical Re-
search Saarland (HIPS). Importantly, the labeled dataset comprises molecule cytotoxicity
measurements. To determine cytotoxicity two samples of a cell line are compared where
one is treated and the other one is untreated over measured relative growth inhibition
[Webel et al., 2020]. We consider a molecule to be cytotoxic if the growth of the treated
sample is inhibited by at least 50% as compared to the untreated one. Additionally, in
our work, we use the cell line HepG2 at the concentration level of 100 µM.
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The overall dataset consists of 6673 molecules including the labeled ones. Whereby,
248 of the molecules are labeled. We perform a random split in this case of 64% (158
molecules), 16% (40 molecules), and 20% (50 molecules) of the train, validation, and test
dataset respectively.

4.2 Dataset Splitting

In a standard machine learning setting, a dataset is typically randomly split into train/val-
idation/test datasets. Similarly, the MoleculeNet datasets are split into these three splits
with proportions 80/10/10 respectively. However, in the context of molecular datasets
random splits are not always ideal for the machine learning algorithm [Wu et al., 2018].

The MoleculeNet datasets are provided with various splitting mechanisms. In our
work, we use scaffold splitting, which entails splitting based on the 2D structural forms
as provided by the RDKit. The choice of scaffold splitting mechanism was made as
it provides more practically useful information about the protein target than random
splitting. A visual illustration highlighting the difference between the random and
scaffold split is presented in Fig. 4.1.

TRAIN

VALID

TEST

RANDOM 
SPLIT SCAFFOLD 

SPLIT 

Figure 4.1: Dataset Splitting





Chapter 5
Methodology

This chapter describes the intricate details of our proposed approaches for training
molecular language models robust to low-data settings, leveraging high-fidelity learned
representations. Hence, this chapter comprises of two parts. The first part explains our
proposed extensions to existing molecular language model pre-training regimes for rep-
resentation learning. Whereby, the second half elicits the adaption of the semi-supervised
learning paradigm to alleviate low-data scenarios.

Pre-training encompasses the representation learning facet of the neural language mod-
els. The current SMILES-based language models use the NLP-inspired MLM pre-
training [Chithrananda et al., 2020]. Additionally, recent state-of-the-art approaches
have adapted pre-training using the physicochemical properties in an MTR fashion
[Fabian et al., 2020]. We select the base model, which is pre-trained with MLM. In Sec. 5.1,
we propose two alternative pre-training approaches to incorporate enumeration knowl-
edge for learning rich representations.

In Sec. 5.1.1, we describe our proposed novel domain adaptation framework for BERT-like
language models. The domain adaptation entails multi-task pre-training, simultaneously
combining MLM, MTR, and CL objectives. Alternatively, in Sec. 5.1.2, we propose a
denoising-based encoder-decoder language model for SMILES canonicalization. Here,
the language model learns to canonicalize the noisy input SMILES.

The transformers-based language models are inherently data-hungry. Thereby, their
performance is hindered significantly in low-data settings. In Sec. 5.2, we discuss mech-
anisms to alleviate such scenarios. Concretely, we assume SMILES enumeration is a
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quintessential data augmentation mechanism. Furthermore, we leverage additional
unlabelled training data with semi-supervised learning to enhance model generalization.

5.1 SMILES Representation Learning

As discussed in Sec. 2.1, SMILES is a simple language for molecules. Thereby, enu-
meration is an essential property of SMILES representation. However, the existing
SMILES language modeling mechanisms fail to explicitly encode enumeration aware-
ness. Thus, the absence of a mechanism that incorporates enumeration knowledge
during pre-training leads to performance degradation on downstream drug discovery
tasks such as QSAR [Payne et al., 2020].

We propose to incorporate enumeration knowledge into language models with two
alternative methods for pre-training language models. We alter pre-training for both
transformer-based encoder and encoder-decoder architectures. For BERT-like language
models, we propose a three-step domain adaptation framework, contrary to two-step
transfer learning approaches. In Sec. 5.1.1, we introduce an additional intermediate
domain-specific pre-training called domain adaptation. During domain adaptation, we
incorporate enumeration knowledge into a pre-trained language model via CL.

Conversely in Sec. 5.1.2, we elaborate that the purpose of our proposed encoder-decoder
model pre-training is to learn a neural canonicalization function using denoising. Specifi-
cally, the input SMILES-based molecules are corrupted with noising functions including
enumeration, and token masking. The decoder is then optimized to output the canonical
version of the noisy SMILES inputs. Hence, the resultant pre-trained language model
possesses inherent implicit knowledge about enumerated SMILES. Thereby, it maximizes
the likelihood of producing similar latent representations for the same molecule when it
is enumerated.

5.1.1 Contrastive Encoder Transformer

We extend the standard transfer learning regime with our proposed BERT-based molecu-
lar domain adaptation framework, which consists of the following three stages:

• Pre-training: Our proposed molecular domain adaptive framework preserves the
existing pre-training mechanisms of MLM and MTR. Importantly, we only use
either MLM or MTR at a time to pre-train a language model.

• Domain Adaptation: At the second stage, we propose additional intermediate
pre-training on domain-specific unlabeled SMILES with multi-task self-supervised
objectives including MLM, MTR, and CL.
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• Fine-tuning: Finally, the domain-adapted language model is fine-tuned in a super-
vised fashion on the downstream QSAR task and then evaluated. Whereby, for the
Virtual Screening domain-specific latent representations of SMILES are directly used
without any additional training.

Step 1: Pre-training

Identical to the standard SMILES-based BERT pre-training, we two employ MLM and
MTR SSL pre-training objectives, as shown in Fig. 5.1. In MLM, 15% of the input SMILES
tokens are randomly masked. The language model then outputs the probability distri-
bution over all possible tokens in the vocabulary for each masked token. This process
enables the language model to learn the semantic structure and produce fingerprints that
encode the relationship between SMILES tokens conditioned on the context.

SMILES

Encoder (BERT etc.)

EMBEDDING

CLS C 1 C C C )...  

CLS C 1 C MASK C )...  

MTRMASKEDLM

Figure 5.1: (Step 1) Pre-training on a large unlabelled dataset.

MLM pre-training pertains to minimizing the cross-entropy loss, as specified in Eq. (5.1).
Specifically, the loss function compares the difference between the predicted probability
distribution with the ground truth tokens distribution. Furthermore, the language model
parameters are then updated using an optimization algorithm such as Stochastic Gradient
Descent (SGD) [Amari, 1993].

LMLM = −
M∑

c=1

yo,c log(po,c) (5.1)

Conversely, the MTR pre-training is independent of the linguistic structure of the SMILES.
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The MTR-based pre-training involves the simultaneous prediction of the 220 real-valued
physicochemical properties of the input molecule. Hence, the language model learns
implicit chemical characteristics associated with a given molecule. In our work, we use
the RDKit framework to acquire the physicochemical descriptors of the pre-training
dataset. These descriptors are part of the following categories:

• FRAGMENT

• CHARGE

• GENERAL

• SURFACE

• GRAPH

• SIMPLE

• DRUGLIKENESS

• ESTATE

• LOGP

• REFRACTIVITY

• GENERAL

The BERT-like language model uses multi-task mean squared error loss as specified in
Eq. (5.2), where D is the 220-dimensional chemical descriptors and N is the number
of training samples. For smooth convergence, we use mean and standard deviation to
normalize each descriptor as a pre-processing step.

LMTR =

N∑

i=1

D∑

j=1

(oij − yij)
2 (5.2)

Step 2: Domain Adaptation

The domain adaptation stage enhances the pre-trained latent SMILES representations
twofold. First, by injecting domain-specific knowledge about the downstream chemical
space. Second, we introduce the CL objectives as shown in Fig. 5.2, to infuse enumeration
awareness into the learned representations. Thereby, the domain adaptation step re-
uses pre-training objectives of MLM and MTR for learning domain-specific knowledge.
Importantly, incorporating CL-based enumeration awareness in the second step makes
our approach more effective and data-efficient. As we will demonstrate empirically in
Chapter 6, the size of the domain-specific dataset (MUV) is significantly smaller than the
pre-training (GuacaMol) dataset.
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Augmented SMILES Pairs

Encoder (BERT etc.)

EMBEDDING

CLS C 1 C C C )...  

CLS C 1 C MASK C )...  

MASKEDLM Contrastive LearningMTR

Figure 5.2: (Step 2) Domain adaptation with downstream domain dataset.

We employ two different architectures to incorporate the CL objectives as part of the
domain adaptation step, namely Siamese BERT (SBERT) and Contrastive BERT (CBERT).
The SBERT architecture [Reimers and Gurevych, 2019] uses two BERT-like encoders. The
encoders are presented with input SMILES pairs. A SMILES pair can have two possible
combinations. It can have a canonical SMILES and one of its enumerations. Alternatively,
a canonical and a random SMILES from the dataset, also known as hard negative, can
form the pair.

The encoders learn the latent representations of SMILES pair and then minimize or
maximize based on the relation between the inputs. As shown in Fig. 5.3, one of the
encoders exclusively learns latent representations for the canonical SMILES. Whereby,
the other encoder translates the enumerations and hard negatives to the latent space.
We use the multiple negative ranking loss function [Henderson et al., 2017] to train the
SBERT.

The multiple negatives ranking loss function performs well to learn representations of a
canonical SMILES and its enumerations to be in a closed vicinity within the chemical
latent space. We use fixed-length embeddings rc and re taken from the [CLS] token pre-
diction as latent representations of the canonical SMILES and its enumeration. The loss
function enforces weight updates of the language model such that a canonical SMILES
and its enumeration are pulled closer in the underlying chemical latent space and vice
versa for hard negatives. The mathematical formulation of the loss function is shown in
Eq. (5.3).
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L(rc, re) = −rTc re + log
∑

n∈Sc

exp(rTc rn) (5.3)

• rc: Latent representation of the canonical SMILES.

• re: Latent representation of the enumerated SMILES.

• rn: Latent representation of the hard negative SMILES.

• Sc: Set of randomly sampled canonical SMILES to create hard negative pairs.

Precisely, this is achieved by changes to the model parameters θc and θe that maximizes
the similarity between rc and re and conversely, minimize the similarity between rc

and rn. The loss function used to achieve this is shown in Eq. (5.3), where Sc is a set of
in-batch randomly sampled SMILES used as hard negatives.

CANONICAL SMILES

Pooling

Ecanonical

Encoder

Augmented SMILES

Pooling

Eaugmented

Encoder

cosine-sim(Ecanonical, Eaugmented/hard_negative)

Figure 5.3: Siamese BERT architecture with contrastive learning.

The CBERT model [Gao et al., 2021] takes SMILES triples instead of pairs. Each triple
consists of canonical SMILES, enumeration, and a hard negative. As shown in Fig. 5.4,
the encoder is based on a single BERT model. Subsequently, the latent SMILES repre-
sentations of the canonical and enumerated SMILES are pulled together, whereby, the
latent representation of the hard negative is pushed away from the latent representations
of the other two SMILES simultaneously. Hence, CBERT only requires a single forward
pass of a BERT-like model to perform both maximization and minimization between the
SMILES representation based on their nature. Unlike the SBERT where hard negatives
are sampled within the batch during the forward pass on the fly, the hard negatives in a
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SMILES triple are fixed and are sampled prior to training the CBERT.

The CBERT model uses the contrastive framework [Chen et al., 2020] which combines the
cross entropy with in-batch negatives [Chen et al., 2017]. It assumes that a dataset with a
set of tuples of text phrases D = {(xi, x

+
i )}Ni=1 where each pair has similar connotations.

We transfer this analogy to the molecular SMILES dataset, where xi refers to the canonical
SMILES and x+

i represents the enumeration of xi. Formally, the contrastive loss for the
CBERT is expressed as follows:

L(rc, re, rn) = − log
esim(rc,re)/τ

∑M
j=1 e

sim(rc,rn)/τ ′
(5.4)

• sim(r1, r2): The cosine similarity function defined as rT1 r2
∥r1∥∥r2∥ .

• rc: Latent representation of the canonical SMILES.

• re: Latent representation of the enumerated SMILES.

• rn: Latent representation of the hard negative SMILES.

• M : Number of SMILES triples in the mini-batch.

• τ : A temperature hyper-parameter that is used to control the entropy.

Pooling

Encoder

Augmented SMILES TRIPLES

cosine-sim(Ecanonical, Eaugmented) cosine-sim(Ecanonical, Ehard_negative)MaskedLM

maximize minimize

Figure 5.4: Contrastive BERT architecture with SMILES triples.

Furthermore, the contrastive framework infuses two implicit properties into the learned
latent fingerprints, (1) distribution, and (2) alignment. The distribution property states
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that learned representation should be uniformly distributed. However, representations
learned with the recent deep language modeling approaches suffer from the anisotropy
problem [Ethayarajh, 2019b, Li et al., 2020b]. The anisotropy problem states that the
learned dense representations follow a cone shape in the latent space. However, the con-
trastive learning objective appears to alleviate the anisotropy problem [Gao et al., 2021].
Moreover, the alignment property entails that the positive SMILES pairs should be closer
to each other distance-wise compared to the hard negatives. We also empirically show
this in Chapter 6, that the CL-based objectives indeed improve the alignment of learned
fingerprints.

In summary, we introduce a three-faceted multi-task self-supervised domain adaptation
phase which includes (1) MLM, (2) MTR, and (3) Contrastive Learning. The domain
adaptation allows the language model to produce domain-specific molecular fingerprints
relevant to the underlying chemical space. Furthermore, CL-based training infuses
enumeration knowledge into a pre-trained language model in a data-efficient manner.
Critically, the success of the domain adaptation heavily relies on the choice of dataset.
We evaluate our approaches on both a proxy dataset and the downstream dataset and
discuss the implications of selecting either of them in Chapter 6.

Step 3: Fine-tuning

SMILES

Encoder (BERT etc.)

EMBEDDING

CLS C 1 C C C )...  

CLS C 1 C MASK C )...  

Classifier (MLP, SVM etc.)

pooled embedding

Figure 5.5: (Step 3) Supervised fine-tuning of the domain-adapted language on the
downstream dataset.
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We perform the standard supervised fine-tuning at the final step of our proposed molec-
ular domain adaptation framework, as shown in Fig. 5.5. Hence, this step requires
completely labeled datasets. In our work, we freeze the weights of the BERT encoder and
extract dense fingerprints using the encoder. Here, freezing refers to we no longer update
the weights of the model. Subsequently, we train multi-label Support Vector Machine
SVM [Cortes and Vapnik, 1995] models for each dataset with the extracted fingerprints
as input features. Lastly, we evaluate our trained classifiers as described in Chapter 6.

5.1.2 Denoising Encoder-decoder Transformer

In addition to encoder-based transformer architectures, we also investigate a transformer-
based encoder-decoder architecture. Traditionally, encoder-decoder SMILES language
models are pre-trained as autoencoders, with SMILES reconstruction as the pre-training
objective. Thereby, such models can produce representations of enumerated SMILES of a
molecule that are distant in the molecular latent space.

To address this for encoder-decoder models, we propose to replace the vanilla SMILES
reconstruction objective with a denoising-based reconstruction objective. Primarily, we
build our work on the BART transformer architecture [Lewis et al., 2019]. The BART
model was originally trained on a natural language corpus. The pre-training phase is
based on corrupting the input documents with a finite set of stochastic noising schemes,
as described in Sec. 2.3.2.

Cc1ccccc1

Enumeration

c1ccccc1C

Cc1c<MASK>ccc<MASK>

c1c<MASK>ccc<MASK>C

Masking

Masking + Enumeration

Encoder Input
(Noised SMILES)

Decoder Input
(Canonical SMILES)

Figure 5.6: SMILES Noising Schemes

Most of the noising schemes prescribed in the original work are based on natural lan-
guage. Hence, the original noising functions are inapplicable to SMILES representation.
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Consequently, we introduce enumeration as a noising scheme, where input SMILES is
enumerated, and the model learns to canonicalize the input SMILES. Additional noising
schemes include masking tokens in the input SMILES and combining both enumeration
and masking schemes. A summarized illustration of the encoder and decoder input
(noising functions and output) is presented in Fig. 5.6. Finally, the described noises
are induced into the canonical SMILES as part of the data preparation step. Then the
model is trained to predict the canonical SMILES whilst training with a denoising-based
reconstruction objective.

The BART model follows the architecture of the vanilla transformer sequence-to-sequence
architecture [Vaswani et al., 2017]. The only difference is the choice of the activation,
where BART uses GeLUs [Hendrycks and Gimpel, 2016] instead of the ReLU activation
functions. The architecture is composed of a bidirectional encoder and an autoregressive
decoder, as shown in Fig. 5.7. The BART model is trained by optimizing the reconstruc-
tion loss, which is the cross-entropy loss between the output of the decoder and the
original noise-free canonical SMILES. Furthermore, the overall architecture is similar to
the BERT architecture except for the following differences:

• No feed-forward layer prior to word prediction.

• Cross-attention is applied over each layer of the decoder, with the output of the
final hidden layer of the encoder.

c1c<MASK>ccc<MASK>C

Noised SMILES

Bidirectional Encoder Autoregressive
Decoder

Cc1ccccc1

Canonical SMILES

Figure 5.7: BART Transformer Architecture

Succinctly put, we present an alternative approach for infusing enumeration knowledge
into a pre-trained sequence-to-sequence language model. Unlike, the encoder-based
domain adaptation framework, the BART-based model incorporates enumeration during
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pre-training. Hence, the model can directly be fine-tuned immediately after pre-training.
For fine-tuning the decoder last hidden output is used as a SMILES fingerprint for
training the downstream SVM-based classifiers.

5.2 Molecular Low-Data Regime

The transformer-based pre-trained language models have demonstrated state-of-the-art
performance on various molecular property prediction QSAR tasks [Ahmad et al., 2022,
Fabian et al., 2020]. However, molecular dataset preparation requires rigorous vetting
and validation from domain experts. Hence, this exercise levies a significant amount of
human and computational resources. Furthermore, accumulating a validated library of
molecules adhering to specific properties or affinities to molecules adds additional non-
trivial constraints. Consequently, this hinders the application of supervised fine-tuning
of pre-trained language models.

5.2.1 Enumeration-aware Semi-supervised Learning

We propose adopting the well-established paradigm of Semi-supervised Learning (SESL)
to circumvent the low-data challenges. Using the SESL-based approaches implies we
can leverage both low-quantity labeled and large unlabeled datasets simultaneously (see
Fig. 5.8). Specifically, we re-purpose two prominent pseudo-labeling-based SESL ap-
proaches, (1) Pseudo-label [Lee et al., 2013] and Deep Co-training [Blum and Mitchell, 1998].
These pseudo-labeling techniques use predictions of the downstream classifier to label
the unlabeled samples, known as pseudo-labels. After that, the classifier’s weights are
updated using both labeled and unlabeled samples in a supervised fashion.

Lx,y
Augmentation
(Enumeration) L'x,y

Small Labeled
dataset

L'
(x, y) U Ux

Downstream Model M

1

Semi-supervised Learning4

2

Ux

Large Unlabeled
dataset

3

Figure 5.8: Semi-supervised learning pipeline for low-data molecular settings.

It is important to note this application of the SESL only modifies the fine-tuning phase of
the pre-trained language model. Whereby, the rest of the transfer learning pipeline for
both enumeration-aware encoder-only (see Sec. 5.1.1) and encoder-decoder (see Sec. 5.1.2)
architectures remains unchanged. Resultantly, these SESL approaches are able to benefit
from enumeration-aware fingerprints in low-data regimes.
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Pseudo-label

Pseudo-label is a simple data-efficient version of the semi-supervised algorithm for
training deep neural networks. The algorithm simultaneously uses both supervised
samples to train the network and then uses the high-confidence predictions on the
unlabeled samples as pseudo labels [Lee et al., 2013], as shown in Fig. 5.9. Subsequently,
the model is trained in a supervised manner on both labeled and (pseudo-labeled)
originally unlabeled examples, with one caveat. The pseudo-label loss function as
defined in Eq. (5.5) controls the proportion of the contribution of the unlabeled examples
to overall loss. This is achieved by introducing a loss weighting function α(t).

Lx,y
Augmentation
(Enumeration) L'x,y

Small Labeled
dataset

Ux

Large Unlabeled
dataset

Augmented
Labeled dataset

.....

pseudo-labels

Enumeration-aware Pre-trained
Transformer

Figure 5.9: Training pipeline of the Pseudo-label SESL approach.

L(X, y) =
1

n

n∑

m=1

C∑

i=1

R(ymi , f(xm
i )) + α(t)

1

n′

n′∑

m=1

C∑

i=1

R(y
′m
i , f(x

′m
i )) (5.5)

• C: Total number of classes in the dataset.

• m, m′: Number of samples in the labeled and unlabeled batches respectively.

• f(x): The pre-trained molecular language model.

• R(y, f(x)): The standard cross-entropy loss function over ground-truth and predic-
tions.

• α(t): The alpha weight function is used to control the proportion of change unla-
beled samples make to the overall loss. It increases as the epochs increase allowing
unlabeled samples to make larger contributions to loss during later epochs. We can
mathematically describe the α(t) function as following:

α(t) =





0, if t < T1

t−T1

T2−T1
αf , if T1 ≤ t < T2

αf , if T2 ≤ t





(5.6)
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Here, we use the following values of the parameters of the alpha function, which
include αf = 3, T1 = 20, and T2 = 60. Whereas, t argument to the α(t) function
refers to the current value of epoch.

Deep Co-training

The deep co-training framework is based on the key assumption that every example in
the dataset has two distinct views, which are also complementary. This entails each view
is sufficient to train a performant classifier independently. Hence, deep co-training trains
two different classifiers, one for each view respectively, as shown in Fig. 5.10. The two
classifiers are used to acquire pseudo-labels, which are predictions with high posteriors.
These pseudo-labels are subsumed into the labeled dataset. This process is iteratively
repeated until the unlabeled dataset is exhausted or a pre-defined stopping criterion is
met [Blum and Mitchell, 1998].

Lx,y

Lx,y U Ux

Small Labeled
dataset

Large Unlabeled
dataset

.....

Ux Enumeration

Canonicalize .....

..... .....
v2

v1

Combine Semi-labeled
dataset

Figure 5.10: Deep Co-training pipeline for training with a semi-labeled dataset.

We adapt co-training for dealing with low-data regimes by defining their mapping in
terms of two complementary views of SMILES. We define the canonical SMILES as view-1
(v1). Whereby, the enumeration of the same canonical SMILES is seen as view-2 (v2).
Additionally, the deep co-training loss consists of two sub-losses influenced by labeled
and unlabeled examples respectively. Furthermore, the overall loss of the two classifiers
C1, and C2 is jointly optimized. The overall loss for the deep co-training is defined as
follows:

L(v1, v2, y) = Lsup + λLcot (5.7)

• Lsup: Corresponds to the standard supervised cross-entropy loss for each classifier
respectively.

Lsup = R(y, C1(v1)) +R(y, C2(v2)) (5.8)

• λ: It is a hyperparameter used to control the contribution of the co-training loss of
unlabeled examples.
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• Lcot: This term ensures that both classifiers agree on their predictions. Concretely,
the predictions of both classifiers on each view for unlabeled data should be as
similar as possible. Therefore, this can be measured using the Jensen-Shannon
divergence as expressed below:

Lcot = R(
1

2
(C1(v1)) + C2(v2)))−

1

2
R(

1

2
(C1(v1)) + C2(v2))) (5.9)

5.3 Summary

In this chapter, we proposed to extend current transfer learning approaches into two
dimensions.

(1) Incorporating the enumeration property of molecular SMILES into learned latent
fingerprints.

(2) Introducing SESL as a viable solution for low-data regimes. Specifically, alleviating
QSAR settings with non-trivial requirements for a labeled dataset with pre-defined
properties or affinities to molecules.

To achieve enumeration awareness, we propose to alter the pre-training phase of both
encoder-only and encoder-decoder transformer-based language models. For the BERT-
like encoder-only transformer, we introduced contrastive learning as an intermediate
self-supervised pre-training objective. Whereby, for encoder-decoder-based BART ar-
chitecture, we presented novel noising functions for denoising-oriented optimization.
Whereby, for low-data settings, we proposed the adoption of pseudo-labeling-based
variants of SESL. Specifically, we explained how pseudo-label, and deep co-training can
be applied to a SMILES-based low-data molecular dataset. In Chapter 6, we explain the
experimental settings, evaluation metrics, and results of our proposed methods. Impor-
tantly, we discuss the experimental results in light of the research question presented in
Sec. 1.4 and the noteworthy takeaways.





Chapter 6
Experimental Evaluation

This chapter explains the experimental outcomes accompanied by the experimental
setup of our proposed approaches. Furthermore, the described experiments directly
address the research questions presented in Sec. 1.4. We also perform additional analysis
discussing the evaluation results. The primary objectives of the experiments are twofold,
(1) evaluating enumeration-aware language models, (2) adapting enumeration-aware
language models to low-data settings.

The evaluation of enumeration-aware language models entails whether incorporating
enumeration knowledge enhances their performance on the downstream tasks. Here,
the downstream tasks include QSAR and Virtual Screening. We also assess explicit
enumeration awareness in the latent space of the learned molecular fingerprints by setting
up an additional independent experiment. Finally, we investigate the possible ways of
adapting the enumeration-aware language models in low-data settings. Specifically, we
examine the introduction of SESL approaches to mitigate the scarcity of labeled data
points.

6.1 Experimental Setup

In this section, we explain the baseline models, model configurations, and evaluation
metrics employed in our experiments.
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6.1.1 Baselines

In our work, we use the baseline self-supervised model pre-trained with the MLM objec-
tive on molecular SMILES [Ahmad et al., 2022, Fabian et al., 2020]. This approach entails
pre-training a transformer model by randomly masking a small fraction of the input.
Here, the training involves minimizing the cross-entropy loss for all predicted masked
tokens. Further details about this approach are specified in Sec. 5.1.

For the evaluation of downstream tasks, the process varies with respect to the na-
ture of the task. For instance, for QSAR tasks, we extract the SMILES representations
as fingerprints from the pre-trained language models using the downstream labeled
dataset. Subsequently, identical to the work of [Winter et al., 2019], we train an addi-
tional Support Vector Machine (SVM) classifier with the extracted fingerprints as input
features. However, for the Virtual Screening task, we solely extract the fingerprints and
then directly evaluate using the virtual screening benchmarking platform by RDKit
[Riniker and Landrum, 2013].

6.1.2 Model Configurations

We evaluate two different architectures namely CBERT and SBERT to inject enumeration
in learned fingerprints as introduced in Sec. 5.1. Hence, we used a different set of
hyperparameters for each architecture, respectively. The necessary details about the
hyperparameters are provided in Tab. 6.1.

Hyperparameters CBERT SBERT BART

Batch Size 32 16 32
Learning Rate 0.00005 0.00005 0.0001

Number of Epochs 10 10 20
Maximum Input Length 32 32 32

Pooling Strategy CLS Mean -

Table 6.1: Summary of hyperparameters for SBERT and CBERT architectures.

Notably, the pooling strategy corresponds to the mechanism used to extract latent
representations prior to applying the contrastive learning objectives. For CBERT, the
CLS token’s hidden representation is used as the hidden representation of each SMILES.
Whereby, SBERT introduces an additional intermediate fully connected layer to project
word embeddings to a lower-dimensional space, which is followed by mean pooling.
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6.1.3 Evaluation Metrics

QSAR

For the QSAR classification tasks, we use Area Under The Curve of the Receiver Operating
Characteristic (AUROC) as specified in the MoleculeNet benchmark. The AUROC score
essentially transforms the ROC curve into a single metric that depicts the model perfor-
mance at various thresholds simultaneously. Importantly, a score of 1.0 on the AUROC
metric entails perfect performance, whereby a 0.5 score entails model performance is
equivalent to a random guess of the target label.

Virtual Screening

We use two metrics for the evaluation of language models-based molecular fingerprints.
The first Virtual Screening evaluation metric corresponds to the AUROC score. Second,
the Boltzmann-Enhanced Discrimination of ROC (BEDROC) [Truchon and Bayly, 2007] with
(α = 20) which evaluates the early enrichment whilst allocating higher weights during
retrieval to top α% ranked SMILES with respect to Boltzmann distribution.

6.2 SMILES Representation Learning Results

To evaluate learned SMILES fingerprints, we evaluate the pre-trained language models
on the Virtual Screening and QSAR downstream tasks. Furthermore, we directly address
the research questions (RQs) in the experiments, each of which corresponds to the
subsections from Sec. 6.2.1 onwards.

6.2.1 Encoder-based Contrastive Domain Adaptation (RQ1)

We evaluate the encoder-based SMILES language models as described in Sec. 5.1.1 against
baseline elaborated in Sec. 6.1.1 on QSAR and Virtual Screening tasks. For both tasks, we
compare the existing pre-training approaches to transfer learning with our proposed
domain adaptation approaches.

QSAR

For downstream QSAR drug discovery tasks, we additionally also compare the effects of
domain adaptation with another unlabeled proxy dataset. In our experiments, we use
the MUV dataset from the MoleculeNet benchmark as the proxy dataset. We evaluate the
models on four of the MoleculeNet benchmark datasets, as shown in Tab. 4.1.



48

Adaptation BBBP BACE Tox21 ClinTox

MLM BERT (Baseline) − 0.686 ± 0.036 0.803 ± 0.034 0.711 ± 0.002 0.983 ± 0.018

MTR BERT − 0.767 ± 0.032 0.796 ± 0.035 0.723 ± 0.002 0.965 ± 0.013

SBERT
P
S

0.713 ± 0.035
0.717 ± 0.035

0.767 ± 0.037
0.820 ± 0.033

0.690 ± 0.003
0.707 ± 0.002

0.986 ± 0.0174
0.992 ± 0.011

CBERT
P
S

0.702 ± 0.036
0.729 ± 0.034

0.790 ± 0.035
0.802 ± 0.034

0.709 ± 0.003
0.705 ± 0.003

0.979 ± 0.020
0.986 ± 0.016

MLM CBERT
P
S

0.702 ± 0.036
0.738 ± 0.034

0.790 ± 0.035
0.807 ± 0.034

0.709 ± 0.003
0.714 ± 0.002

0.966 ± 0.026
0.990 ± 0.013

MTR CBERT
P
S

0.764 ± 0.033
0.720 ± 0.035

0.774 ± 0.037
0.799 ± 0.035

0.723 ± 0.002
0.716 ± 0.003

0.972 ± 0.025
0.980 ± 0.019

MLM MTR BERT
P
S

0.765 ± 0.032
0.701 ± 0.036

0.790 ± 0.035
0.739 ± 0.039

0.723 ± 0.002
0.722 ± 0.002

0.945 ± 0.036
0.970 ± 0.024

MLM MTR CBERT
P
S

0.774 ± 0.032
0.710 ± 0.035

0.806 ± 0.034
0.800 ± 0.035

0.729 ± 0.002
0.721 ± 0.003

0.930 ± 0.041
0.960 ± 0.029

Table 6.2: Results for the MoleculeNet classification datasets on AUROC (↑) metric. “P”
in the Adaption column indicates baseline model adaption on a proxy dataset (MUV),
whereby, “S” indicates the same dataset as the target dataset.

On all datasets, CL-based domain adaptation when coupled with MLM and MTR objec-
tives outperforms other objectives, as shown in Tab. 6.2. For the BBBP and Tox21 datasets,
the best results are observed when all pre-training objectives of MLM, MTR, and CL
are combined on the proxy dataset. Whereby, for BACE and ClinTox, SBERT-based do-
main adaptation on the target datasets appears to be most effective. Hence highlighting
the quintessential importance of intermediate contrastive domain adaptation prior to
fine-tuning.

Virtual Screening

For the Virtual Screening task, we use the RDKit benchmarking platform. The eval-
uation setting and the details about the datasets are described in detail in Sec. 4.1.2.
Importantly, the objective of this experiment is to evaluate the robustness and fidelity of
representations of our proposed domain-adapted language models.
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AUROC (↑) BEDROC (↑)

ECFC4 (Baseline) 0.603 ± 0.056 0.170 ± 0.079
MLM BERT (Baseline) 0.615 ± 0.108 0.225 ± 0.102

MTR BERT 0.621 ± 0.121 0.262 ± 0.113
SBERT 0.673 ± 0.086 0.274 ± 0.108
CBERT 0.697 ± 0.091 0.270 ± 0.109

MLM CBERT 0.708 ± 0.093 0.281 ± 0.112
MTR CBERT 0.668 ± 0.111 0.285 ± 0.116

MLM MTR BERT 0.671± 0.107 0.286 ± 0.114
MLM MTR CBERT 0.666 ± 0.106 0.279 ± 0.113

Table 6.3: Results of Encoder-based approaches for Virtual Screening with the RDKit
benchmarking platform.

Identical to the QSAR results on Virtual Screening the contrastive approaches demon-
strate the most competitive results. Here, CBERT-based domain adaptation on MUV
proves to be the most promising domain adaptation technique for the Virtual Screening
task. Thereby, the results show that injecting enumeration awareness into the learned
fingerprints using contrastive learning aids in the identification of true active molecules
given a query molecule.

6.2.2 Denoising-based Encoder-decoder Canonicalization BART (RQ2)

Similar to the encoder-based language models, here we evaluate our proposed encoder-
decoder denoising approach based on BART architecture as introduced in Sec. 5.1.2. The
evaluation settings for both tasks are identical to encoder-based language models as
explained in Sec. 6.2.1.

QSAR

For the evaluation of encoder-decoder-based models on QSAR downstream tasks, we
contrast the influence of various stochastic noising schemes as described in Sec. 5.1.2.
The overall evaluation setting remains identical to the one for encoder-based models as
elaborated in Sec. 6.2.1.
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Noise Adaptation BBBP BACE Tox21 ClinTox

MLM BERT (Baseline) − − 0.686 ± 0.036 0.803 ± 0.034 0.711 ± 0.002 0.983 ± 0.018

MBART Masking − 0.704 ± 0.036 0.785 ± 0.036 0.687 ± 0.003 0.989 ± 0.013
PBART Enumeration − 0.721 ± 0.035 0.802 ± 0.034 0.707 ± 0.002 0.990 ± 0.013

MPBART
Masking +

Enumeration
P
S

0.745 ± 0.034
0.731 ± 0.034

0.812 ± 0.034
0.813 ± 0.033

0.702 ± 0.003
0.701 ± 0.003

0.989 ± 0.013
0.952 ± 0.031

Table 6.4: Results for the MoleculeNet classification datasets on AUROC (↑) metric. “P”
in the Adaption column indicates baseline model adaption on the proxy dataset (MUV),
whereby, “S” indicates the same dataset as the target dataset.

The results indicate that combining the noising schemes of masking and enumerations
enable the models to learn more granular semantic knowledge of enumerations. Thus,
the performance of BART models pre-trained with a combined noising scheme was better
than single noising schemes. Although, denoising-based models performed reasonably
on all QSAR datasets, however, they fail to outperform the best encoder-based domain
adaption approaches on any of the datasets, as shown in Tab. 6.4.

Virtual Screening

In Tab. 6.5, we show the performance of denoising-based canonicalization language
models on the Virtual Screening. Here, the evaluation setting is identical to the Virtual
Screening evaluation task described Sec. 6.2.1 as well. Similarly, this experiment seeks
to establish the expressiveness of representations learned by encoder-decoder-based
canonicalization language models.

Noise AUROC (↑) BEDROC (↑)

ECFC4 (Baseline) − 0.603 ± 0.056 0.170 ± 0.079
MLM BERT (Baseline) − 0.615 ± 0.108 0.225 ± 0.102

MTR BERT − 0.621 ± 0.121 0.262 ± 0.113
MBART Masking 0.615 ± 0.110 0.214 ± 0.099
PBART Enumeration 0.646 ± 0.109 0.256 ± 0.110

MPBART Masking + Enumeration 0.660 ± 0.104 0.263 ± 0.111

Table 6.5: Results of Encoder-decoder BART models for Virtual Screening with the RDKit
benchmarking platform.

We observe that similar to the denoising-based evaluation of the QSAR tasks here
as well, combined noising schemes outperform other noising schemes. Additionally,
for Virtual Screening task as well, the contrastive encoder-based models’ performance
stays superior as compared to the denoising-based encoder-decoder language models.
Thereby indicating adopting encoder-based contrastive learning domain-adaptation is
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more beneficial for the downstream task of Virtual Screening in comparison to denoising-
based encoder-decoder models.

6.2.3 Comparison to Others (RQ3)

We compare the performance of our proposed approaches to some of the most relevant
existing molecular transformers-based language models. To be more specific, we juxta-
pose the results of our approaches to others on QSAR MoleculeNet datasets. The results
shown in Tab. 6.6 demonstrate that our approaches consistently outperform the other
approaches. Thereby, demonstrating that CL-based domain adaptation is beneficial for
downstream QSAR tasks.

BBBP BACE Tox21 ClinTox

SMILES Transformer [Honda et al., 2019] 0.684 ± 0.036 0.752 ± 0.039 0.695 ± 0.003 0.987 ± 0.016
ChemBERTa [Chithrananda et al., 2020] 0.643 ± 0.037 − − −

ChemBERTa-2 [Ahmad et al., 2022] 0.742 ± 0.034 0.799 ± 0.035 − 0.601 ± 0.040
Ours 0.774 ± 0.032 0.820 ± 0.033 0.729 ± 0.002 0.992 ± 0.011

Table 6.6: Results for the MoleculeNet classification datasets on AUROC (↑) metric
compared to comparative approaches. We re-compute AUROC scores for SMILES
Transformer [Honda et al., 2019] on scaffold splits as the original paper computes them
on synthetic splits.

6.2.4 Evaluation of Enumeration-aware Representations (RQ4)

Here, we seek to evaluate which enumeration-aware pre-training method encodes the
most SMILES enumeration knowledge into the language model representations. Pre-
cisely, we evaluate enumeration awareness in the following retrieval setting.

Let S be the canonical SMILE of a molecule. We enumerate S for m times to generate
the set E. In our experiments, we use the value of m = 1000 in order to exhaust all
valid enumerations of S. For the retrieval task, all the canonical SMILES in a dataset are
used as queries Q. Whereby, the collection of Q for all canonical SMILES composes the
document collection D. More formally as given below:

D =
N⋃
i=1

Ei

Here, N is the size of Q and Ei is the set of all enumerations of ith SMILES in Q. The
evaluation process involves retrieving all enumerations of a canonical SMILES (∀e ∈ E)
from D for a given canonical SMILES as query q ∈ Q. We evaluate the retrieved SMILES
on metrics including Normalized Discounted Cumulative Gain (NDCG)@K, Precision@K,



52

Recall@K. Here, K corresponds to the number of retrieved SMILES for a given query.
The evaluation results for mentioned metrics are presented in Fig. 6.1, Fig. 6.2, and
Fig. 6.3 for the earlier mentioned metrics respectively.
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Figure 6.1: NDCG@K for SMILES retrieval on the MoleculeNet benchmark.
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Figure 6.2: Precision@K for SMILES retrieval on the MoleculeNet benchmark.
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Figure 6.3: Recall@K for SMILES retrieval on the MoleculeNet benchmark.

From the retrieval experiments as shown above, we observe that CL-based domain-
adapted language models outperform others. More specifically, CBERT and MLM CBERT
consistently demonstrate superior enumeration retrieval capabilities on all metrics. For
NDCG@K (Fig. 6.1), and Precision@K (Fig. 6.2) the retrieval performance of CBERT and
MLM CBERT degrades the least for increasing values of K. Identically, for Recall@K

(Fig. 6.3) the same approaches demonstrate the most performance gain as the values of
K increase. In conclusion, the CL-based intermediate pre-training indeed embeds most
enumeration-based knowledge into pre-trained molecular language models.
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6.3 Enumeration-aware Semi-supervised Learning Results

For enumeration-aware SESL evaluation, we conduct experiments to investigate whether
SESL approaches coupled with enumeration-aware pre-trained language models can
alleviate label scarcity. Importantly, we extend enumeration-aware BERT-like language
models by fine-tuning them with SESL approaches.

6.3.1 Semi-supervised Learning for Small Molecular Datasets (RQ5)

Our experiments, primarily focus on mitigating the low-data scenarios for QSAR-based
downstream tasks. Furthermore, we use identical datasets from supervised learning
approaches including BBBP, BACE, ClinTox, and Tox21. Notably, for ClinTox and Tox21
we use the most representative subtask CT_TOX and SR-p53 respectively.

To evaluate our proposed approaches on a small molecular dataset, we synthetically
simulate low-resource dataset scenarios. Specifically, by drawing a small random sample
of size SPC for each class. Here, SPC corresponds to the number of samples per class
with values including {50, 100, 150, 200, 250}. Furthermore, in order to get conclusive
results, we repeat this process for T = 20 trials for each value of SPC. We present the
results on BACE, BBBP, Tox21, and ClinTox datasets in Tab. 6.7, Tab. 6.8, Tab. 6.9, and
Tab. 6.10 respectively.

SPC@50 SPC@100 SPC@150 SPC@200 SPC@250

MLM BERT (Baseline) 0.669 ± 0.011 0.73 ± 0.012 0.745 ± 0.009 0.767 ± 0.009 0.786 ± 0.009

MTR BERT 0.671 ± 0.015 0.728 ± 0.010 0.728 ± 0.011 0.738 ± 0.007 0.751 ± 0.010
Pseudo-label 0.671 ± 0.013 0.764 ± 0.005 0.738 ± 0.010 0.745 ± 0.010 0.745 ± 0.006
Co-training 0.763 ± 0.013 0.770 ± 0.016 0.765 ± 0.012 0.768 ± 0.024 0.791 ± 0.017

Table 6.7: Results of Semi-supervised learning approaches on low-data BACE dataset
using the AUROC (↑) metric. SPC@N corresponds to the number of samples per class
in the training dataset.
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SPC@50 SPC@100 SPC@150 SPC@200 SPC@250

MLM BERT (Baseline) 0.684 ± 0.0.007 0.698 ± 0.007 0.688 ± 0.008 0.713 ± 0.008 0.702 ± 0.009

MTR BERT 0.665 ± 0.009 0.697 ± 0.008 0.702 ± 0.009 0.703 ± 0.010 0.728 ± 0.006
Pseudo-label 0.661 ± 0.012 0.686 ± 0.008 0.692 ± 0.010 0.693 ± 0.008 0.694 ± 0.009
Co-training 0.686 ± 0.013 0.683 ± 0.015 0.700 ± 0.003 0.700 ± 0.006 0.705 ± 0.007

Table 6.8: Results of Semi-supervised learning approaches on low-data BBBP dataset
using the AUROC (↑) metric. SPC@N corresponds to the number of samples per class
in the training dataset.

SPC@50 SPC@100 SPC@150 SPC@200 SPC@250

MLM BERT (Baseline) 0.632 ± 0.010 0.642 ± 0.008 0.652 ± 0.007 0.670 ± 0.005 0.670 ± 0.004

MTR BERT 0.627 ± 0.007 0.639 ± 0.008 0.641 ± 0.007 0.650 ± 0.007 0.655 ± 0.005
Pseudo-label 0.638 ± 0.009 0.768 ± 0.015 0.803 ± 0.012 0.793 ± 0.006 0.785 ± 0.006
Co-training 0.627 ± 0.003 0.694 ± 0.004 0.694 ± 0.004 0.696 ± 0.003 0.701 ± 0.002

Table 6.9: Results of Semi-supervised learning approaches on low-data Tox21 dataset
using the AUROC (↑) metric. SPC@N corresponds to the number of samples per class
in the training dataset.

SPC@50 SPC@100 SPC@150 SPC@200 SPC@250

MLM BERT (Baseline) 0.955 ± 0.011 0.952 ± 0.012 0.951 ± 0.009 0.952 ± 0.009 0.958 ± 0.009

MTR BERT 0.954 ± 0.015 0.956 ± 0.010 0.960 ± 0.011 0.957 ± 0.007 0.961 ± 0.010
Pseudo-label 0.957 ± 0.017 0.953 ± 0.014 0.952 ± 0.015 0.952 ± 0.014 0.957 ± 0.013
Co-training 0.951 ± 0.008 0.953 ± 0.009 0.949 ± 0.009 0.948 ± 0.005 0.952 ± 0.004

Table 6.10: Results of Semi-supervised learning approaches on low-data ClinTox dataset
using the AUROC (↑) metric. SPC@N corresponds to the number of samples per class
in the training dataset.

The results indicate that the SESL-based co-training and pseudo-label approaches sig-
nificantly improve the performance of models trained on the BACE and Tox21 datasets.
Furthermore, including additional unlabeled data can potentially lead to even better
results. Hence, including SMILES data points with similar latent representation or physic-
ochemical properties to increase the size of the unlabeled dataset can be a promising
direction for future work.
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6.4 Application: HIPS Dataset Results

We also evaluate our proposed approaches on a real-world low-data molecular dataset by
HIPS for cytotoxicity, as described in Sec. 4.1.5. The results using SESL-based fine-tuning
are shown below:

AUROC (↑)

MLM BERT (Baseline) 0.838 ± 0.002

MTR BERT 0.831 ± 0.002
Pseudo-label 0.869 ± 0.003
Co-training 0.836 ± 0.002

Table 6.11: Results on the low-data HIPS dataset for cytotoxicity classification. For cell
line HepG2 @ 100 µM.

Similar to the MoleculeNet benchmark, for the HIPS dataset we also observe that SESL
fine-tuning such as the one based on pseudo-label considerably improves the model
performance on the downstream low-data QSAR task.

6.5 Summary

In this chapter, we presented the results of the experiments to evaluate our proposed
approaches. Furthermore, we systemically evaluated each research question associ-
ated with our proposed methods. The results indicate that incorporating enumeration
awareness into molecular fingerprints can lead to significant improvement on down-
stream tasks such as QSAR and Virtual Screening. Furthermore, SSL-based pre-training
approaches augmented with contrastive learning can best incorporate the enumeration
knowledge into learned fingerprints. Finally, we also demonstrated that replacing fully
supervised fine-tuning of language models with semi-supervised learning can help miti-
gate low-resource scenarios. Importantly, our evaluation process encompasses both the
MoleculeNet benchmark and the real-world low-resource HIPS dataset.





Chapter 7
Conclusion

7.1 Summary

In this work, the primary goal is to learn high-fidelity and expressive molecular fin-
gerprints from SMILES-based molecular datasets. Furthermore, our work serves as
preliminary research on improving the generalization capabilities of pre-trained molec-
ular language models for datasets with label scarcity problems. While the existing
molecular language model pre-training regimes perform reasonably well. The SMILES-
based MLM pre-training fails to take into account the enumeration knowledge, which is
an essential property of molecular SMILES representation. Thus, the learned fingerprints
belonging to the same molecular are prone to be distant in the molecular latent space.
This results in performance degradation on downstream tasks such as QSAR and Virtual
Screening.

To mitigate the absence of enumeration knowledge in the learned molecular fingerprints,
we introduce two alternative pre-training objectives for transformer-based encoder-only
and encoder-decoder architectures respectively. For BERT-like encoder-based architec-
ture, we propose intermediate multi-task pre-training with contrastive learning called
domain adaption. The contrastive learning pre-training not only infuses enumeration
knowledge into the molecular fingerprints but also improves their alignment and distri-
bution in the latent space. Whereby, for BART-like encoder-decoder architecture, we set
the pre-training objective to learn a canonicalization function by denoising the corrupted
input SMILES with various stochastic input noising functions.

56
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Importantly, the acquisition of domain-specific datasets with specific protein affinities
and properties is not feasible in most real-world molecular drug discovery settings.
Whereby, the fine-tuning of the pre-trained language models requires the downstream
dataset to be of reasonable size. Hence, the performance of the fine-tuned language
model on small labeled datasets suffers. In our work, we propose to alleviate low-data
settings for molecular language models by altering the fine-tuning process. Precisely, we
propose semi-supervised learning approaches which can leverage additional unlabeled
examples from the same distribution, yielding performance improvements on the down-
stream tasks such as QSAR.

In summary, our research project makes the following two key contributions:

• Learning High-fidelity Molecular Fingerprints: Modifying the pre-training regimes
of molecular language models to infuse enumeration property into learned finger-
prints. Thereby, enabling the fingerprints of the same molecule to be close in the
molecular latent space.

• Generalization on Low-data Scenarios: Replacing fully supervised fine-tuning
of language models with semi-supervised learning approaches. Hence, enabling
generalization on datasets where further label acquisition is costly and non-trivial.

Our Enumeration-aware transformers improve over the baseline MLM-based language
models on downstream drug discovery tasks. The evaluation process is based on two
molecular downstream drug discovery tasks of QSAR and Virtual Screening. For QSAR,
we evaluate both the encoder-only and encoder-decoder variants on four of the Molecu-
leNet datasets. These datasets include Tox21, ClinTox, BACE, and BBBP. Results indicate
that our proposed multi-task domain adaptive pre-training achieves a performance
gain of up to 9% on the AUROC metric. We also show that domain adaptation on a
related proxy dataset instead of the downstream dataset also enhances the performance
of the downstream model. For Virtual Screening, we use RDKit’s benchmarking platform
for evaluation purposes and observe up to 10% and 5% improvement on the AUROC
and BEDROC20 metrics respectively. Lastly, we also empirically show that contrastive
domain adaptation encodes the most enumeration knowledge into learned fingerprints.

For low-data scenarios, we evaluate our proposed semi-supervised methods on molec-
ular datasets with label scarcity by synthetically simulating low-data settings on the
MoleculeNet datasets as well as on a real-world low-resource dataset by the HIPS. For
the synthetic low-data setting, we sample a fixed number of samples from each class and
train the downstream model in a semi-supervised manner. We repeat the training and
evaluation process for each dataset size for 20 trials to get conclusive results. Finally, our
results show that semi-supervised learning improves performance on the AUROC metric
by as much as 11%. Synonymously, we show that fine-tuning with the semi-supervised
pseudo-label approach improves the AUROC score by ∼3% on the HIPS dataset. Thereby,
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demonstrating enumeration-aware semi-supervised fine-tuning as a promising direction
for dealing with the scarcity of labels in future work.

7.2 Future Work

Our work on low-resource datasets only uses the molecules from the same distribution
of the downstream dataset. Hence, this limits the application of the semi-supervised
learning paradigm if a sufficient amount of unlabeled data from the same distribution is
unavailable. This can be mitigated by including unlabeled molecules from other datasets
which have similar underlying physicochemical properties or the fingerprints of the
labeled molecules. Hence, evaluating such an acquisition method for unlabeled data can
be an important facet of future work. Additionally, combining the labeled low-resource
dataset with a reasonably large publicly available labeled dataset from the same domain
can also be an alternative direction for future work.
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Appendix A
Code Modules

The experimental and evaluation pipelines corresponding to this thesis are implemented
in the form of multiple modules. This appendix chapter briefly highlights the functional-
ity of each of those modules. The precise details about the usage of each module can be
found on their respective web pages.

A.1 Enumeration-aware Molecular Transformers

This module contains the code for pre-training enumeration-aware transformers. It
includes the implementation of training with contrastive learning alongside multi-task
regression, and masked language modeling as pre-training objectives to inject enu-
meration knowledge into pre-trained language models. The corresponding code can
be found at https://github.com/MoleculeTransformers/enumeration-aware-molecule-
transformers

A.2 Fine-tuning on low-data via Semi-supervised Learn-
ing

This work package contains the code implementation that replaces fully supervised fine-
tuning of molecular language models with semi-supervised learning methods including
pseudo-label, and deep co-training to generalize language models in low-data scenarios.
The corresponding code can be found at https://github.com/MoleculeTransformers/moleculenet-
bert-ssl
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A.3 RDKit Virtual Screening Benchmarking Platform for
Transformers

We implemented the port of the RDKit Virtual Screening Benchmarking Platform3 to
evaluate enumeration-aware fingerprints on the Virtual Screening task. The corresponding
code can be found at https://github.com/MoleculeTransformers/rdkit-benchmarking-
platform-transformers

A.4 SMILES Featurizers

This code module allows obtaining enumeration-aware fingerprints from various out-
of-the-box pre-trained molecule transformers. The corresponding pre-trained models and
code implementation can be found at https://github.com/MoleculeTransformers/smiles-
featurizers

A.5 SMILES Augment

This code module provides different stochastic and interpolation-oriented SMILES aug-
mentation mechanisms to augment SMILES-based training datasets. The corresponding
code can be found at https://github.com/MoleculeTransformers/smiles-augment

3https://github.com/rdkit/benchmarking_platform.
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